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Articles 

Compilers for the New Generation of Hewlett-Packard Computers, by Deborah S. 4 Coutant, Carol L. Hammond, and Jon W. Kelley Optimizing compilers realize thk poten- 
tial of the new reduced-complexity architecture. 

6 Components of the Optimizer 
16 An Optimization Example 

1 8 Authors 

A Stand-Alone Measurement Plotting System, by Thomas H. Daniels and John Fenoglio 20 Measure and record low-frequency phenomena with this instrument. It also can send the 
measurements to a host computer and plot data taken by other instruments. 

22 Eliminating Potentiometers 

Digital Control of Measurement Graphics, by Steven T. Van Voorhis Putting a micro- 24 processor in the servo loop is a key feature. A vector profiling algorithm is another. 

Measurement Graphics Software, by Francis E. Bockman and Emil Maghakian This 27 package simplifies measuring, recording, plotting, and annotating low-frequency phenomena. 

Analog Channel for a Low-Frequency Waveform Recorder, by Jorge Sanchez No 32 potentiometers are used in this design that automatically zeros and calibrates its input 
ranges. 

UsabilSty Tasting: A Valuable Tool for PC aeSign, by Daniel B Murington Somelimes 
a personal computer feature isn't used the way it was expected. Watching sample users 

can help remedy such difficulties. 
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Hewlett-Packard’s next-generation computers are now under development 
in the program codenamed Spectrum, and are scheduled to be introduced 
in 1986. In our,August 1985 issue, Joel Bimbaum and Bill Worley discussed 
the philosophy and the aims of the new computers and HPs architecture, 
which has been variously described as reduced-complexity, r+uced instruc- 
tion set computer (RISC), or high-precision. Besides providing higher perfor- 
mance than existing HP computers, an important objective for the new ar- 
chitecture is to support efficient high-level language development of systems 
and applications software. Compatibility with existing software is another 

new computers, and in fact, the architecture was developed jointly by both hardware and software 
engineers. In the article on page 4, three HP compiler designers describe the new compiler 

, there will be Fortran, Pascal, COBOL, and C compilers, with others to 
An optional component of the compiler system called the optimizer tailors 
ze the full potential of the architectural features and make programs run 

faster on the new machines. As much as possible, the compiler system is designed to remain 
unchanged for different operating systems, an invaluable characteristic for application program 
development. In the article, the authors debunk several myths about RISCs. showing that RlSCs 
don’t need an architected procedure call, don’t cause significant code expansion because of the 
simpler instructions, can readily perform integer multiplication, and can indeed support commercial 
languages such as COBOL. They also describe millicode, HP’s implementation of complex func- 
tions using the simple instructions packaged into subroutines. Millicode acts like microcode in 
more traditional designs, but is common to all machines of the family rather than specific to each. 

The article on page 20 introduces the HP 7090A Measurement Plotting System and the articles 
on pages 24, 27, and 32 expand upon vafious aspects of its design. The HP 7090A is an X-Y 
recorder, a digital plotter, a low-frequency waveform recorder, and a data acquisition system all 
in one package. Although all of these instruments have been available separately before, for 
some measurement applications where graphics output is desired there are advantages to having 
them all together. The analogto-digital converter and memory of the waveform recorder extend 
the bandwidth of the X-Y recorder well beyond the limits of the mechanism (3 kHz instead of a 
few hertz). The signal conditioning and A-to-D conversion processes are described in the article 
on page 32. The servo design (page 24) is multipurposethe HP 7090A can take analog inputs 
directly or can plot vectors received as digital data. A special measurement graphics software 
package (page 27) is designed to help scientists and engineers extend the stand-alone HP 
7090As capabilities without having to write their own software. 

No matter how good you think your design is, it will confound some users and cause them to 
circumvent your best efforts to make it friendly. Knowing this, HP’s Personal Computer Division 
has been conducting usability tests of new PC designs. Volunteers who resemble the expected 
users are given a series of tasks to perform. The session is videotaped and the product’s designers 
are invited to observe. The article on page 36 reports on the sometimes humorous and always 
valuable results. 

-R.P. Dolan 

What’s Ahead 
The February issue will present the design stories of three new HP instrument offerings. The 

cover subject will be the HP 5350A, HP 5351A, and HP 5352A Microwave Frequency Counters, 
which use gallium arsenide hybrid technology to measure frequencies up to 40 GHz. Also featured 
will be the HP 8757A Scalar Network Analyzer, a transmission and reflection measurement system 
for the microwave engineer, and the HP 3457A Multimeter, a seven-function, 3’/2-to-6I/z-digit 
systems digital voltmeter. 

JANUARY 1986 HEWLET-PACKARD JOURNAL 3 

WWW. H PARCHIVE.COM 

i 



Compilers for the New Generation of 
Hewlett-Packard Computers 
Compilers are particularly important for the reduced- 
complexity, high-precision architecture of the new 
machines. They make it possible to realize the full potential 
of the new architecture. e 

by Deborah S. Coutant, Carol L. Hammond, and Jon W. Kelley 

W ITH THE ADVENT of any new architecture, com- 
pilers must be developed to provide high-level 
language interfaces to the new machine. Compilers 

are particularly important to the reduced-complexity, high- 
precision architecture currently being developed at Hewlett- 
Packard in the program that has been code-named Spectrum. 
The Spectrum program is implementing an architecture that 
is similar in philosophy to the class of architectures called 
RISCs (reduced instruction set computers).' The importance 
of compilers to the Spectrum program was recognized at 
its inception. From the early stages of the new architecture's 
development, software design engineers were involved in 
its specification. 

The design process began with a set of objectives for the 
new architecture.' These included the following: 

It must support high-level language development of sys- 
tems and applications software. 
It must be scalable across technologies and implementa- 
tions. 
It must provide compatibility with previous systems. 
These objectives were addressed with an architectural 

design that goes beyond RISC. The new axhitecture has 
the following features: 

. 

- 
There are many simple instructions, each of which exe- 
cutes in a single cycle. 
There are 32 high-speed general-purpose registers. 
There are separate data and instruction caches, which 
are exposed and can be managed explicitly by the operat- 
ing system kernel. 
The pipeline has been made visible to allow the software 
to use cycles normally lost following branch and load 
instructions. 
Performance can be tuned to specific applications by 
adding specialized proFessors that interface with the 
central processor at the general-register, cache, or main 
memory levels. 
The compiling system developed for this high-precision 

architecture* enables high-level language programs to use 
these features. This paper describes the compiling system 
design and shows how it addresses the specific require- 
ments of the new architecture. First, the impact of high- 
level language issues on the early architectural design de- 
cisions is described. Next, the low-level structure of the 
'The term "high-precison architecture" is used because the instruction set for the new 
architecture was chosen M the basis of execution frequency as determined by extensive 
measurements across a variety of workloads 

compiling system is explained, with particular emphasis 
on areas that have received special attention foi this ar- 
chitecture: program analysis, code generation, and optimi- 
zation. The paper closes with a discussion of RISC-related 
issues and how they have been addressed in this compiling 
system. 

Designing an Architecture for High-Level Languages 
The design of the new architecture was undertaken by 

a team made up of design engineers specializing in 
hardware, computer architecture, operating systems, per- 
formance analysis, and compilers. It began with studies of 
computational behavior, leading to an initial design that 
provided efficient execution of frequently used instruc- 
tions, and addressed the trade-offs involved in achieving 
additional functionality. The architectural design was scru- 
tinized by software engineers as it was being developed, 
and their feedback helped to' ensure that compilers and 
operating systems would be able to make effective use of 
the proposed features. 

A primary objective in specifying the instruction set was 
to achieve a uniform execution time for all instructions. 
All instructions other than loads and branches were to be 
realizable in a single cycle. No instruction would be in- 
cluded that required a significantly longer cycle or signif- 
icant additional hardware complexity. Restricting all in- 
structions by these constraints simplifies the control of exe- 
cution. In conventional microcoded architectures, many in- 
structions pay an overhead because of the complexity of 
control required to execute the microcode. In reduced-com- 
plexity computers, no instruction pays a penalty for a more 
complicaaed operation, Fumtionality that i s  not available 
in a single-cycle instruction is achieved through multiple- 
instruction sequences or, optionally, with an additional 
processor. 

As the hardware designers began their work on an early 
implementation of the new architecture, they were able to 
discover which instructions were costly to implement, re- 
quired additional complexity not required by other instruc- 
tions, or required long execution paths, which would in- 
crease the cycle time of the machine. These instructions 
were either removed, if the need for them was not great, 
or replaced with simpler instructions that provided the 
needed functionality. As the hardware engineers provided 
feedback about which instructions were too costly to in- 

~ 
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, Similarly, several inst 
ly to generate Boolean c 

more general two-instruction sequence, enabling all other 
operations to be executed faster. 

The philosophy of reduced-complexity computers in- 
cludes the notion that the frequent operations should be 
fast, possibly at the expense of less frequent operatioas. 
However, the cost of an infrequent operation should not 
be so great w ta counterbalance the efficient execution of 
the dmple operations. Each proposed changeW the in- 

common branches. Branches are implemented such that 
an instruction immediately following the branch can be 
executed before the branch takes effect.' This allows the 
program to avoid losing a cycle if useful work is possible 

only in the caw of a taken branch for backward 
, and oxkly in the case of a non-taken branch for 

forward branches. This scheme was chosen to enable all 
available cycles to be used in the most common cases. 
Backward conditional branches are most often used in a 
loop, and such branches will most often be taken, branching 
backwards a number of times before falling through at the 
end of the iteration, Thus, a nullification scheme that al- 
lows this extra cycle to be used in the taken-branch case 
causes this cycle to be used most often. Conversely, for 
forward branches, the nullification scheme was tuned to 
the non-taken-branch case. Fig. 1 shows the code generated 
for a simple code sequence, illustrating the conditional 
branch nullification scheme. 
Very early in the development of the architectural specifi- 

cation, work was begun on tor for the new com- 
puter architecture and a pr compiler. Before the 
design was frozen, fee able a b u t  the ease 
with which high-level 1-w constructs could be trans- 

ment will often be followe 

not taken. 

were also implemented, providing valuable data for the 
optimizer and compiler designers. 

compiling system is designed to a1 
to be implemented with language 
ends. An optimization phase, common to all ofthe languages, 
provides efficient register use and pipeline schedulqg, and 
eliminates unnecessary computations. With the elimina- 
tion of complex instructions found in many architectures, 
the responsibility for generating the proper s 
instructions for high-level language constructs 
compiler. Using the primitive instructions, the compiler can 
construct precisely the sequence required for the application. 

For this class of computer, the software architecture plays 
a strong role in the performance of compiled code. There 
is no procedure call instruction, so the procedure calling 
sequence is tuned to handle simple cases, such as leaf 
routines (procedures that do not call any other procedures), 
without fixed expense, while still allowing the com- 
plexities of nested and recursive procedures. The saving 
of registers at procedure call and procedure entry is depen- 

(COfltlflUed Ofl p&Q0 7) 
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Components of the Optimizer 

The optimizer is composed of two types of components, those 
that perform data flow and control flow analysis, and those that 
perform optimizations. The information provided by the analysis 
components is shared by the optimization components, and is 
used to determine when instructions can be deleted, moved, 
rearranged, or modified. 

For each procedure, the control flow analysis identifies basic 
blocks (sequences of code that have no internal branching). 
These are combined into intervals, which form a hierarchy of 
control structures. Basic blocks are at the bottom of this hierarchy, 
and entire procedures are at the top. Loops and if-then constructs 
are examples of the intermediate structures. 

Data flow information is collected for each interval. It is ex- 
pressed in terms of resource numbers and sequence numbers. 
Each register, memory location, and intermediate expression has 
a unique resource number, and each use or definition of a re- 
source has a unique sequence number. Three types of data flow 
information are calculated: 

Reaching definitions: for each resource, the set of definitions 
that could reach the top of the interval by some path. 

m Exposed uses: for each resource, the set of uses that could 
be reached by a definition at the bottom of the interval. 
UNDEF set: the set of resources that are not available at the 
top of the interval. A resource is available if it is defined along 
all paths reaching the interval, and none of its operands are 
later redefined along that path. 

From this information, a fourth data structure is built: 
Web: a set of sequence numbers having the property that for 
each use in the set, all definitions that might reach it are also 
in the set. Likewise, for each definition in the set, all uses it 
might reach are also in the set. For each resource there may 
be one or many webs. 

Loop Optlmhtions 
Frequently the majority of execution time in a program is spent 

executing instructions contained in loops. Consequently, loop- 
based optimizations can potentially improve execution time sig- 
nificantly. The following discussion describes components that 
perform loop optimizations. 
Loop Invariant Code Motion. Computations within a loop that 
yield the same result for every iteration are called loop invariant 
computations. These computations can potentially be moved 
outside the loop, where they are executed less frequently. 

An instruction inside the loop is invariant if it meets either of 
two conditions: either the reaching definitions for all its operands 
are outside the loop, or its operands are defined by instructions 
that have already themselves been identified as loop invariant. 
In addition, there must not be a conflicting definition of the instruc- 
tion’s target inside the loop. If the instruction is executed condi- 
tionally inside the loop, it can be moved out only if there are no 
exposed uses of the target at the loop exit. 

An example is a computation involving variables that are not 
modified in the loop. Another is the computation of an array’s 
base address. 
Strength Reduction and Induction Variables. Strength reduction 
replaces multiplication operations inside a loop with iterative ad- 
dition operations. Since there is no hardware instruction for in- 
teger multiplication in the architecture, converting sequences of 
shifts and adds to a single instruction is a performance improve- 
ment. Induction variables are variables that are defined inside 
the loop in terms of a simple function of the loop counter. 

Once the induction variables have been determined, those 
that are appropriate for this optimization are selected. Any mul- 
tiplications involved in the Computation of these induction vari- 
ables are replaced with a CopYfrom a temporary. This temporary 
holds the initial value of the function, and is initialized preceding 
the loop. It is updated at the point of all the reaching definitions 
of the induction variable with an appropriate addition instruction. 
Finally, the induction variable itself is eliminated if possible. 

This optimization is frequently applied to the computation of 
array indices inside a loop, when the index is a function of the 
loop counter. 

Common Subexpression Ellmlnstfon 
Common subexpression elimination is the removal of redun- 

dant computations and the reuse of the one result. A redundant 
computation can be deleted when its target is not in the UNDEF 
set for the basic block it is contained in, and all the reaching 
definitions of the target are the same instruction. Since the op- 
timizer runs at the machine level, redundant loads of the same 
variable in addition to redundant arithmetic computations can 
be removed. 

Store-Copy Optimization 
It is possible to promote certain memory resources to registers 

for the scope of their definitions and uses. Only resources that 
satisfy aliasing restrictions can be transformed this way. If the 
transformation can be performed, stores are converted to copies 
and the loads are eliminated. This optimization is very useful for 
a machine that has a large number of registers, since it maximizes 
the use of registers and minimizes the use of memory. 

For each memory resource there may be multiple webs. Each 
memory web is an independent candidate for promotion to a 
register. 

Unused Definitlon Elimination 
Definitions of memory and register resources that are never 

used are removed. These definitions are identified during the 
building of webs. 

Local Constant Propagation 
Constant propagation involves the foldmg and substitution of 

constant computations throughout a basic block. If the result of 
a computation is a constant, the instruction is deleted, and the 
resultant constant is used as an immediate operand in sub- 
sequent instructions that reference the original result. Also, if the 
operands of a conditional branch are constant, the branch can 
be changed to an unconditional branch or deleted. 

Coloring Register Allocation 
Many components introduce additional uses of registers or 

prolong the use of existing registers over larger portions of the 
procedure. Near-optimal use of the available registers becomes 
crucial after these optimizations have been made. 

Global register allocation based on a method of graph coloring 
is performed. The register resources are partitioned into groups 
of disjoint definitions and uses called register webs. Then, using 
the exposed uses information, interferences between webs are 
computed. An interference occurs when two webs must be as- 
signed different machine registers. Registers that are copies of 
each other are assigned to the same register and the copies are 
eliminated. The webs are sorted based on the number of interfer- 
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The peephole optimizer uses a dictionary of equivalent instruc- 

tion patterns to simplify instruction sequences. Some of the pat- 
terns identify simplifications to addressing mode changes, bit 
manipulations, and data type conversions. 

Branch Optimkationr 
The branch optimizer component traverses the instructions, 

transforming branch instruction sequences into more efficient 
instruction sequences. It converts bFa 
tions to instructions with conditional nu 
target is the next instruction is deleted. Branch chains involving 

Dead code is code that cannot be reached at program execu- 
tion, since no branch to it or fall-through exists. This code is 
deleted. 

schduw 
The instruction scheduler reorders the instructions within a 

basic block, minimizing IoacYstore and floating-point interlocks. 
It also schedules the instructions following branches. 

Suneel Jein 
Development Engineer 

Information Technology Group 

cture, all arithmetic, logical, or 

addressing modes. The compiler's task is further simplified 
by the fact that the instruction set has been constructed in 
a very symmetrical manner. All instructions are the same 

here are a limited number of instruction for- 

e instruction set m 
of replacing or deleting one or more instructions much 
easier. 

Of course, the reduced instruction set computer, though 
simplifying some aspects of the compilation, requires more 
of the compilers in other areas. Having a large number of 
registers places the burden on the compilers to generate 
code that can use these registers efficiently. Other aspects 
of this new architecture also require the compilers to be 
more intelligent about code generation. For example, the 
instruction pipeline has become more exposed and, as men- 
tioned earlier, the instruction following a branch may be 
executed before the branch takes effect. The compiler there- 
fore needs to schedule such instructions effectively. In ad- 
dition, loads from memory, which also require more than 
a single cycle, will interlock with the following instruction 
if the target register is used immediately. The compiler can 
increase execution speed by scheduling instructions to 
avoid these interlocks. The optimizer can also improve the 
effectiveness of a floating-point coprocessor by eliminating 

cesses and by reorder- 

puter. Such optimizations reduce the frequency of loads, 
stores, and multiplied, and d law the processor to be used 
with greater efficiency. However, the favorable cost/perfor- 
mance of the new HP archit can be realized even with- 
out optimization. 

The Compiler System 
architecture share a 

existing products available on the HP 3000 family of com- 
puters. All of these compilers conform to HP standard 
specifications for their respective languages, and thus will 
provide smooth migration from the HP 1000, HP 3000, and 
HP 9000 product lines. The C compiler is a new product, 
and as mentioned earlier, was the compiler used to pro- 
totype the instruction set from its earliest design phase. 
The C compiler conforms to recognized industry standard 
language specifications. Other compilers under develop- 
ment will be integrated into this compiler system. 

To achieve successful integration of compilers into a 
homogeneous compiling system it was necessary to define 
distinct processing phases and their exact interfaces in 
terms of data and control transfer. Each compiler begins 
execution through the front end. This includes the lexical, 
syntactic, and semantic analysis prescribed by each lan- 
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guage standard. The front ends generate intermediate codes 
from the source program, and pass these codes to the code 
generators. The intermediate codes are at a higher level 
than the machine code generated by a later phase, and 
allow a certain degree of machine abstraction within the 
front ends. 

Two distinct code generators are used. They provide 
varying degrees of independence from the front ends. Each 
interfaces to the front ends through an intermediate code. 
One of these code generation techniques has already been 
used in two compiler products for the HP 3000. Fig. 2 
shows the overall design of the compilers. Each phase of 
the compilation process is pictured as it relates to the other 
phases. The front ends are also responsible for generating 
data to be used later in the compilation process. For exam- 
ple, the front end generates data concerning source state- 
ments and the types, scopes and locations of procedure1 
function and variable names for later use by the symbolic 
debugger. In addition, the front end is responsible for the 
collection of data to be used by the optimizer. 

These compilers can be supported by multiple operating 
systems. The object file format is compatible across operat- 
ing systems. 

Code Generation 
The code generators emit machine code into a data struc- 

ture called SLLIC (Spectrum low-level intermediate code). 
SLLIC also contains information regarding branches and 
their targets, and thus provides the foundation for the build- 

HPP-1 I 

Source 

I 

- I 

IP COB01 

I 

I 
CodOGml CodeGenP 

I Compiler 
Strategy 

SLLIC L--d _ _ -  Optimizer I 

------ 

Debugger 
Strategy 

Run-Time Librark. 

I Executable I 

Fig. 2. The compiler system for HPs new generation of high- 
precision-architecture computers. 
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ing of a control flow graph by the optimizer. The SLLIC 
data structure contains the machine instructions and the 
specifications for the run-time environment, including the 
program data space, the literal pool, and data initialization. 
SLLIC also holds the symbolic debug information generated 
by the front end, is the medium for later optimization, and 
is used to create the object file. 

The reduced instruction set places some extra burden 
on the code generators when emitting code for high-level 
language constructs such as byte moves, decimal opera- 
tions, and procedure calls. Since the instruction set con- 
tains no complex instructions to aid in the implementation 
of these constructs, the code generators are forced to use 
combinations of the simpler instructions to achieve the 
same functionality. However, even in complex instruction 
set architectures, complex case analysis is usually required 
to use the complex instructions correctly. Since there is 
little redundancy in the reduced instruction set, most often 
no choice of alternative instruction sequences exists. The 
optimizer is the best place for these code sequences to be 
streamlined, and because of this the overall compiler de- 
sign is driven by optimization considerations. In particular, 
the optimizer places restrictions upon the code generators. 

The first class of such restrictions involves the presenta- 
tion of branch instructions. The optimizer requires that all 
branches initially be followed by a NOP (no operation) in- 
struction. This restriction allows the optimizer to schedule 
instructions easily to minimize interlocks caused by data 
and register access. These NOPs are subsequently replaced 
with useful instructions, or eliminated. 

The second class of restrictions concerns register use. 
Register allocation is performed within the optimizer. 
Rather than use the actual machine registers, the code 
generators use symbolic registers chosen from an infinite 
register set. These symbolic registers are mapped to the set 
of actual machine registers by the register allocator. Al- 
though register allocation is the traditional name for such 
an activity, register assignment is more accurate in this 
context. The code generators are also required to associate 
every syntactically equivalent expression in each proce- 
dure with a unique symbolic register number. The symbolic 
register number is used by the optimizer to associate each 
expression with a value number (each run-time value has 
a unique number). Value numbering the symbolic registers 
aids in the detection of common subexpressions within 
the optimizer. For example, every time the local variable 
i is loaded it is loaded into the same symbolic register, and 
every time the same two symbolic registers are added to- 
gether the result is placed into a symbolic register dedicated 
to hold that value. 

Although the optimizer performs transformations at the 
machine instruction level, there are occasions where it 
could benefit from the existence of slightlymodified and/or 
additional instructions. Pseudoinstructions are instruc- 
tions that map to one or more machine instructions and 
are only valid within the SLLIC data structure as a software 
convention recognized between the code generators and 
the optimizer. For example, the NOP instruction mentioned 
above is actually a pseudoinstruction. No such instruction 
exists on the machine, although there are many instruction/ 
operand combinations whose net effect would be null. The 



. 

doinstruction saves the optimizer from having to 
e all those sequences. Another group of pseudo- 

instructions has been defined to allow the optimizer to 
view all the actual machine instructions in the same canon- 
ical form, without, being restricted by the register use pre- 
scribed by the instructions. For example, some instructions 
use the same register as both a source and a target. This 
makes optimization very difficult for that instruction. The 
solution involves the definition of a set of pseudo- 
instructions, each of which maps to a two-instruction se- 
quence, first to copy the source register to a new symbolic 
register, and then to perform the operation on that new 
register. The copy instruction will usually be eliminated 
by a later phase of the optimizer. 

Another class of perhaps more important pseudoinstruc- 
tions involves the encapsulation of common operations 
that are traditionally supported directly by hardware, but 
in a reduced instruction set are only supported through 
the generation of code sequences. Examples include mul- 
tiplication, division, and remainder. Rather than have each 
code generator contain the logic to emit some correct se- 
quence of instructions to perform multiplication, a set of 
pseudoinstructions has been defined that makes it appear 
as if a high-level multiplication instruction e 
architecture. Each of the pseudoinstructions is defined in 
terms of one register target and either two register operands 
or one register operand and one immediate. The use of 
these pseudoinstructions also aids the optimizer in the 
detection of common subexpressions, loop invariants, and 
induction variables by reducing the complexity of the code 
sequences the optimizer must recognize. 

Control flow restrictions are also placed on generated 
code. A basic block is defined as a straight-line sequence 
of code that contains no transfer of control out of or into 
its midst. If the code generator wishes to set the carryhor- 
row bit in the status register, it must use that result within 
the same basic block. Otherwise, the optimizer cannot 
guarantee its validity. Also, all argument registers for a 
procedure/function call must be loaded in the same basic 
block that contains the procedure call. This restriction 
helps the register allocator by limiting the instances where 
hard-coded (actual) machine registers can be live (active) 
across basic block boundaries. 

Optimization 
After the SLLIC data structure has been generated by the 

code generator, a call is made to the optimizer so that it 
can begin its processing. The optimizer performs intrapro- 
cedural local and global optimizations, and can be turned 
on and off on a procedure-by-procedure basis by the pro- 
grammer through the use of compiler options and directives 
specific to each compiler. Three levels of optimization are 
supported and can also be selected at the procedural level. 

Optimization is implemented at the machine instruction 
level for two reasons. First, since the throughput of the 
processor is most affected by the requests made of the mem- 
ory unit and cache, optimizations that reduce the number 
of requests made, and optimizations that rearrange these 
reguests to suit the memory unit best, are of the most value. 
It is only at the machine level that all memory accesses 
become exposed, and are available candidates for such op- 

timieations. Second, the machine level is the co 
nominator for all the compilers, and will continue to be 
for future compilers for the architecture. This allows the 
implementation of one optimizer for the entire family of 
compilers. In addition to very machine specific optimiza- 
tions, a number of theoretically machine independent op- 
timizations (for example, loop optimizations) are also in- 
cluded. These also benefit from their low-level implemen- 
tation, since all potential candidates are exposed. For exam- 
ple, performing loop optimizations at the machine level 
allows the optimizer to move constants outside the loop, 
since the machine has many registers to hold them. In sum- 
mary, no optimization has been adversely affected by this 
strategy; instead, there have been only benefits. 

Level 0 optimization is intended to be used during pro- 
gram development. It is difficult to support symbolic de- 
bugging in the presence of all optimizations, since many 
optimizations reorder or delete instruction sequences. Non- 
symbolic debugging is available for fully optimized pro- 
grams, but users will still find it easier to debug nonop- 
timized code since the relationship between the source and 
object code is clearer. No code transformations are made 
at level 0 that would preclude the use of a symbolic debug- 
ger. In particular, level 0 optimizations include some copy 
and NOP elimination, and limited branch scheduling. In 
addition, the components that physically exist as part of 
the optimizer, but are required to produce an executable 
program, are invoked. These include register allocation and 
branch fixing (replacing short branches with long branches 
where necessary). 

After program correctness has been demonstrated using 
only level 0 optimizations, the programmer can use the 
more extensive optimization levels. There are two addi- 
tional levels of optimization, either of which results in 
code reordering. The level any particular optimization 
component falls into is dependent upon the type of infor- 
mation it requires to perform correct program transforma- 
tions. The calculation of data flow information gives the 
optimizer information regarding all the resources in the 
program. These resources include general registers, dedi- 
cated and status registers, and memory locations (vari- 
ables). The information gleaned includes where each re- 
source is defined and used within the procedure, and is 
critical for some optimization algorithms. Level 1 optimi- 
zations require no data flow information, therefore adding 
only a few additional optimizations over level 0. Invoking 
the optimizer at level 2 will cause all optimizations to be 
performed. This requires data flow information to be calcu- 
lated. 

Level 1 optimization introduces three new optimiza- 
tions: peephole and branch optimizations and full instruc- 
tion scheduling. Peephole optimizations are performed by 
pattern matching short instruction sequences in the code 
to corresponding templates in the peephole optimizer. An 
example of a transformation is seen in the C source expres- 
sion 

if (flag & 0x8) 

which tests to see that the fourth bit from the right is set 
in the integer flag. The unoptimized code is 
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LDO 8(0), 19 ; load immediate8 into rl9 
AND 31,19,20 ; intersect r31 (flag) with rl9 into RO 
COMIBT, = 0,20,label ; compare result against 0 and branch 

Peephole optimization replaces these three instructions 
with the one instruction 

nd,> = 31,28,label ; branch on bit 

which will branch if bit 28 (numbered left to right from 0) 
in r31 (the register containing flag) is equal to 0. 

Level 1 optimization also includes a branch optimizer 
whose task is to eliminate unnecessary branches and some 
unreachable code. Among other tasks, it replaces branch 
chains with a single branch, and changes conditional 
branches whose targets are unconditional branches to a 
single conditional branch. 

The limited instruction scheduling algorithm of level 0 
is replaced with a much more thorough component in level 
1. Level 0 scheduling is restricted to replacing or removing 
the NOPs following branches where possible, since code 
sequence ordering must be preserved for the symbolic de- 
bugger. In addition to this, level 1 instructions are sched- 
uled with the goal of minimizing memory interlocks. The 
following typify the types of transformations made: 

Separate a load from the instruction that uses the loaded 
register 
Separate store and load instruction sequences 

rn Separate floating-point instructions from each other to 
improve throughput of the floating-point unit. 
Instruction scheduling is accomplished by first con- 

structing a dependency graph that details data dependen- 
cies between instructions. Targeted instructions are sepa- 
rated by data independent instructions discovered in the 
P P h .  

The same register allocator is used in level 0 and level 
1 optimization. It makes one backwards pass over each 
procedure to determine where the registers are defined and 
used and whether or not they are live across a call. It uses 
this information as a basis for replacing the symbolic regis- 
ters with actual machine registers. Some copy elimination 
is also performed by this allocator. 

Level 2 optimizations include all level 1 optimizations 
as well as local constant propagation, local peephole trans- 
formations, local redundant definition elimination, com- 
mon subexpression and redundant loadhtore elimination, 
loop invariant code motion, induction variable elaboration 
and strength reduction, and another regis& allocator. The 
register allocator used in level 2 is partially based on graph 
coloring technology? Fully optimized code contains many 
more live registers than partially optimized or nonop- 
timized code. This register allocator handles many live 
registers better than the register allocator of levels 0 and 
1. It has access to the data flow information calculated for 
the symbolic registers and information regarding the fre- 
quency of execution for each basic block. 

Control Flow and Data Flow Analysis 
All of the optimizations introduced in level 2 require 

data flow information. In addition, a certain amount of 
control flow information is required to do loop-based op- 

timizations. Data flow analysis provides information to the 
optimizer about the pattern of definition and use of each 
resource. For each basic block in the program, data flow 
information indicates what definitions may reach the block 
(reaching definitions) and what later uses may be affected 
by local definitions (exposed uses). Control flow informa- 
tion in the optimizer is contained in the basic block and 
interval structures. Basic block analysis identifies blocks 
of code that have no internal branching. Interval analysis 
identifies patterns of control flow such as if-then-else and 
loop  construct^.^ Intervals simplify data flow calculations, 
identify loops for the loop-based optimizations, and enable 
partial update of data flow information. 

In the optimizer, control flow analysis and data flow 
analysis are performed in concert. First, basic blocks are 
identified. Second, local dats flow information is calcu- 
lated for each basic block. Third, interval analysis exposes 
the structure of the program. Finally, using the interval 
structure as a basis for its calculation rules, global data 
flow analysis calculates the reaching definitions and ex- 
posed uses. 

Basic block analysis of the SLLIC data structure results 
in a graph structure where each basic block identifies a 
sequence of instructions, along with the predecessor and 
successor basic blocks. The interval structure is built on 
top of this, with the smallest interval being a basic block. 
Intervals other than basic blocks contain subintervals 
which may themselves be any type of interval. Interval 
types include basic block, sequential block (the subinter- 
vals follow each other in sequential order), if-then, if-then- 
else, self loop, while loop, repeat loop, and switch (case 
statement). When no such interval is recognized, a set of 
subintervals may be contained in either a proper interval 

i :=o; 

I :=i + 1; 

Fig. 3. This figure illustrates the interval structure of a simple 
sequence of Pascal code. The nested boxes represent the 

3-g,ym-val hierarchy. 
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-entry cycles or targets of unknown 
procedure will be represented by a 
ultiple descendants. Fig. 3 shows the 
a simple Pascal program. 

flow information begins with an 
of what resources are used and defined by each 

Each use or definition of a resource is identified 
e sequence number. Associated with each se- 

quence number is information regarding what resource is 
being referenced, and whether it is a use or a definition. 
Each SLLIC instruction entry contains sequence numbers 
for all of the resources defined or used by that instruction. 
The local data flow analysis determines what local uses 
are exposed at the top of the basic block (Le., there is a use 
of a resource with no preceding definition in that block) 
and what local definitions will reach the end of the block 
(i.e., they define a resource that is not redefined later in 
the block). The local data flow analysis makes a forward 
and backward pass through the instructions in a basic block 
to determine this information. 

Local data flow information is propagated out from the 
basic blocks to the outermost interval. Then, information 
about reaching definitions and exposed uses is propagated 
inward to the basic block level. For known interval types, 
this involves a straightforward calculation for each s 
terval. For proper intervals, this calculation must 
formed twice for each subinterval, and for improp 
vds, the number of passes is limited by the number of 
subintervals. 

" 

As each component of the optimizer makes 
SLLIC graph, the data flow informati 
Two strategies are employed to brkng this infor- 

mation up-to-date: patching of the existing data flow infor- 
mation and partial recalculation. For all optimizations ex- 
cept induction variable elimination, the data flow informa- 
tion can be patched by using information about the nature 

on to determine exactly how the data 
n must be changed. All transformations take 
e loop interval in induction variable elimi- 

of data flow information within the 
recalculating the local dataflow infor- 

mation where a change has been made, and then by prop- 
agating that change out to the loop interval. The effect of 
induction variable elimination on intervals external to the 
loop is limited, and this update is performed by patching 
the data flow information for these intervals. 

Aliasing 
The concept of resources has already been presented in 

the earlier discussion of data flow analysis. The optimizer 
provides a component called the resource manager for use 
throughout the compiler phases. The resource manager is 

f responsible for the maintenance of information regarding 
the numbers and types of resources within each procedure. 
For example, when the code generator needs a new sym- 
bolic register, it asks the resource manager for one. The 
front ends also allocate resources corresponding to memory 
locations for every variable in each procedure. The re- 
sources allocated by the resource manager are called re- 
source numbers. The role of the resource manager is espe- 

cially impartant in this family ileirs. It 
way fix the front end, which d memory wsourc 
in terms of programmer variable names, and the optimize 
which deals with memory resour--- in terms of 
memory locations, to communica 
tween the two. 

through the resource manager is the identification of 
unique programmer variables. The SLLIC instructions are 
decorated with information that associates resource num- 
bers with each operand. This allows the optimizer to rec- 
ognize uses of the same variable without having to compare 
addresses. The necessity for communication between the 
front ends and the optimizer is demonstrated by the follow- 
ing simplified example of C source code: 

he relationsh 

The most basic use of the resource numbers ob 

Prmo { 
int i, j, k, *p; 

i = j + k ;  
*p = 1; 
i - j +  

At first glance it might seem that the second calculation 
of j + k is redundant, and in fact it is a common subexpres- 
sion that need only be calculated once. However, if the 
pointer p has been set previously to point to either j or k, 
then the statement *p = 1 might change the value of either 
j or k. If p has been assigned to point to j, then we say that 
*p and j are aliased to each other. Every front end includes 
a component called a gatherep whose responsibility it is 

source. A later component of the optimizer called the 
aliaser reorganizes this information in terms more suitable 
for use by the local data flow component of the optimizer. 

Each gatherer had to solve aliasing problems specific to 
its particular target language. For example, the Pascal 
gatherer was able to use Pascal's strong typing to aid in 
building sets of resources that a pointer of some particular 
type can point to. Since C does not have strong typing, the 
C gatherer could make no such assumptions. The COBOL 
compiler had to solve the aliasing problems that are intro- 
duced with the REDEFINE statement, which can make data 
items look like arrays. Fig. 4 shows the structure of the 
new compilers from an aliasing perspective. it details data 
and control dependencies. Once the aliasing data has been 
incorporated into the data flow information, every compo- 
nent in the optimizer has access to the information, and 
incorrect program transformations are prevented. 

The aliaser also finishes the calculation of the aliasing 
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relationships by calculating the transitive closure* on the 
aliasing information collected by the gatherers. The need 
for this calculation is seen in the following skeleton Pascal 
example: 

procedure p; 
begin 

P : /\integer; 

9 : /\integer; 

p := q; 

q : =  p; 

end: 

The SLLIC Package 
The SLLIC data structure is allocated, maintained, and 

manipulated by a collection of routines called the SUIC 
package. Each code generator is required to use these 
routines. The SLLIC package produces an object file from 
the SLLIC graph it is presented with, which is either op- 
timized or unoptimized. During implementation it was re- 
latively easy to experiment with the design of the object 
file, since its creation is only implemented in one place. 
The object file is designed to be transportable between 
multiple operating systems running on the same architec- 
ture. 

The SLLIC graph also contains the symbolic debug infor- 
mation produced by the front end. This information is 
placed into the object file by the SLLIC package. The last 
step in the compilation process is the link phase. The linker 
is designed to support multiple operating systems. As much 
as possible, our goal has been for the new compilers to 
remain unchanged across operating systems, an invaluable 
characteristic for application development. 

Addressing RlSC Myths 
The new compiling system provides a language develop- 

The aliasing information concerning q must be ment system that is consistent across languages. However, 
each language presents unique requirements to this system. 
Mapping high-level language constructs to a reduced-com- 
plexity computer requires the development of new im- 
plementation strategies. Procedure calls, multiplication, 
and other complex operations often implemented in micro- 

ferred to p, and vice versa, because of the effects of 
assignment statments shown. The aliaser is an 
component used by all the front ends, and 
language specific data. Another type of 
occurs when two or more programmer 
with one another in memory. This happens within C unions 
and Fortran equivalence statements. Each gatherer must 
also deal with this issue, as well as collecting information 
concerning the side effects of procedure and function calls 
and the use of arrays. 

‘Transitive closure For a given resource, the set of resources that can be shown to be 
aliased to the given resource by any sequence of aliasing relationships 

I I -- I 

Finalized 
Alias 
Information 

I Optimizer 
. ,  

Fig. 4. Scheme for the collection of alias information. 

12 HEWLETT-PACKARD JOURNAL JANUARY 1986 

code or suppoked in the hardware can be addressed with 
code sequences tuned to the specific need. The following 
discussion is presented in terms of several misconceptions, 
or myths, that have appeared in speculative discussions 
concerning code generation for reduced-complexity ar- 
chitectures. Each myth is followed by a description of the 
approach adopted for the new HP compilers. 

* 

Myth: An architected procedure call instruction is 
necessary for efficient procedure calls. 

Modern programming technique encourages program- 
mers to write small, well-structured procedures rather than 
large monolithic routines. This tends to increase the fre- 
quency of procedure calls, thus making procedure call ef- 
ficiency crucial to overall system performance. 

Many machines, like the HP 3000, provide instructions 
to perform most of the steps that make up a procedure call. 
The new HP high-precision architecture does not. The 
mechanism of a procedure call is not architected, but in- 
stead is accomplished by a software convention using the 
simple hardwired instructions. This provides more flexibil- 
ity in procedure calls and ultimately a more efficient call 
mechanism. 

Procedure calls are more than just a branch and return 
in the flow of control. The procedure call mechanism must 
also provide for the passing of parameters, the saving of 
the caller’s environment, and the establishment of an envi- 
ronment for the called procedure. The procedure return 
mechanism must provide for the restoration of the calling 
procedure’s environment and the saving of return values. 

The new HP machines are register-based machines, but 
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tforward approach to procedure calls on these 
es that the calling procedure acquires the 
r preserving its state. This approach em- 

Save all registers whose contents must be preserved 
across the procedure call. This prevents the called pro- 
cedure, which will also use and modify registers, from 
affecting the calling procedure's state. On return, those 
register values are restored. 
Evaluate parameters in order and push them onto the 
stack. This makes them available to the called procedure 
which, by convention, knows how to access them. 
Push a frame marker. This is a fixed-size area containing 
several pieces of information. Among these is the static 
link, which provides information needed by the called 
procedure to address the local variables and parameters 
of the calling procedure. The return address of the calling 
procedure is also found in the stack marker. 
Branch to the entry point of the called procedure. 
To return from the call, the called procedure extracts the 

return address from the stack marker and branches to it. 
edure then removes the parameters from 

restores all saved registers More  program 

model correctly implements the steps 
te a procedure call, but is relatively expen- 

sive. The model forces the caller to assume all responsibil- 
ity for preserving its state. This is a safe approach, but 
causes too many register saves to occur. To optimize the 
program's execution, the compiler makes extensive use of 
registers to hold local variables and temporary values. 
These registers must be saved at a procedure call and re- 
stored at the return. The model also has a high overhead 
incurred by the loading and storing of parameters and link- 
age information. The ultimate goal of the procedure call 
convention is to reduce the cost of a call by reducing mem- 
ory accesses. 

The new compilers minimize this problem by introduc- 
ing a procedure call convention that includes a register 
partition. The registers are partitioned into caller-saves (the 
calling procedure is responsible for saving and restoring 
them), callee-saves (the called procedure must save them 
at entry and restore them at exit), and linkage registers. 
Thirteen of the 32 registers are in the caller-saves partition 
and 16 are in the callee-saves partition. This spreads the 
responsibility for saving registers between the calling and 
called procedures and leaves some registers available for 
linkage. 

The register allocator avoids unnecessary register saves 
by using caller-saves registers for values that need not be 
preserved. Values that must be saved are placed into regis- 
ters from the callee-saves partition. At procedure entry, 
only those callee-saves registers used in the procedure are 
saved. This minimizes the number of loads and stores of 
registers during the course of a call. The partition of regis- 
ters is not inflexible; if more registers are needed from a 
particular partition than are available, registers can be bor- 
rowed from the other partition. The penalty for using these 
additional registers is that they must be saved and restored, 
but this overhead is incurred only when many registers are 

placed on the stack. This is because memory 
references are made to push e eter and as a con- 
sequence the stack size is constantly altered. The new com- 
pilers allocate a permanent parameter area large enough to 
hold the parameters for all calls performed by the proce- 
dure. They also minimize memory references when storing 
parameters by using a combination of registers and memory 
to pass parameters. Four registers from the callee-saves 
partition are used to pass user parameters; each holds a 
single 32-bit value or half of a 64-bit value. Since proce- 
dures frequently have few parameters, the four registers 
are usually enough to contain them all. This removes the 
necessity of storing parameter values in the parameter area 
before the call. If more than four 32-bit parameters are 
passed, the additional ones are stored in the preallocated 
parameter area. If a parameter is larger than 64 bits, its 
address is passed and the called procedure copies it to a 
temporary area. 

Additional savings on stores and loads occur when the 
called procedure is a leaf ntioned previously, 
the optimizer attempts t e use of registers to 

is aleaf, the register 
allocator uses the for this purpose, 
thus eliminating register saves for both the calling and 
called procedures. It is never necessary to store the return 
address or parameter registers of a leaf routine since they 
will not be modified by subsequent calls. 

Leaf routines do not need to build a stack frame, since 
they make no procedure calls. Also, if the allocator suc- 
ceeds in representing all local variables as registers, it is 
not necessary to build the local variable area at entry to 
the leaf procedure. 

The convention prescribes other uses of registers to elimi- 
nate other loads and stores at procedure calls. The return 
address is always stored in a particular register, as is the 
static link if it is needed. 

To summarize, the procedure call convention used in 
the new HP computers streamlines the overhead of proce- 
dure calls by minimizing the number of memory references. 
Maximal use of registers is made to limit the number of 
memory accesses needed to handle parameters and linkage. 
Similarly, the convention minimizes the need to store val- 
ues contained in registers and does not interfere with at- 
tempts at optimization. 

' 

Myth: The simple instructions available in RISC 
result in significant code expansion. 

Many applications, especially commercial applications, 
assume the existence of complex high-level instructions 
typically implemented by the system architecture in micro- 
code or hardware. Detractors of RISC argue that significant 
code expansion is unavoidable since the architecture lacks 
these instructions. Early results do not substantiate this 
argument.'.' The new HP architecture does not provide 
complex instructions because of their impact on overall 
system performance and cost, but their functionality is 
available through other means. 

As described in an earlier article: the new HP machines 
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do not have a microcoded architecture and all of the in- 
structions are implemented in hardware. The instructions 
on microcoded machines are implemented in two ways. 
At the basic level, instructions are realized in hardware. 
More complex instructions are then produced by writing 
subroutines of these hardware instructions. Collectively, 
these constitute the microcode of the machine. Which in- 
structions are in hardware and which are in microcode are 
determined by the performance and cost goals for the sys- 
tem. Since HP’s reduced instruction set is implemented 
solely at the hardware level, subroutines of instructions 
are equivalent to the microcode in conventional architec- 
tures. 

To provide the functionality of the complex instructions 
usually found in the architecture of conventional machines, 
the design team developed the alternative concept of mil- 
licode instructions or routines. Millicode is HP’s imple- 
mentation of complex instructions using the simple hard- 
ware instructions packaged into subroutines. Millicode 
serves the same purpose as traditional microcode, but is 
common across all machines of the family rather than spe- 
cific to each. 

The advantages of implementing functionality as mil- 
licode are many. Microcoded machines may contain hid- 
den performance penalties on all instructions to support 
multiple levels of instruction implementation. This is not 
the case for millicode. From an architectural viewpoint, 
millicode is just a collection of subroutines indistinguish- 
able from other subroutines. A millicode instruction is exe- 
cuted by calling the appropriate millicode subroutine. 
Thus, the expense of executing a millicode instruction is 
only present when the instruction is used. The addition of 
millicode instructions has no hardware cost and hence no 
direct influence on system cost. It is relatively easy and 
inexpensive to upgrade or modify millicode in the field, 
and it can continue to be improved, extended, and tuned 
over time. 

Unlike most microcode, millicode can be written in the 
same high-level languages as other applications, reducing 
development costs yet still allowing for optimization of 
the resultant code. Severely performance-critical millicode 
can still be assembly level coded in instances where the 
performance gain over compiled code is justified. The size 
of millicode instructions and the number of such instruc- 
tions are not constrained by considerations of the size of 
available control store. Millicode resides in the system as 
subroutines in normally managed memory, either in virtual 
memory where it can be paged into and out of the system 
as needed, or in resident memory as performance consid- 
erations dictate. A consequence of not being bound by re- 
strictive space considerations is that compiler writers are 
free to create many more specialized instructions in mil- 
licode than would be possible in a microcoded architecture, 
and thus are able to create more optimal solutions for spe- 
cific situations. 

Most fixed instruction sets contain complex instructions 
that are overly general. This is necessary since it is costly 
to architect many variations of an instruction. Examples 
of this are the MVB (move bytes) and M W  (move words) 
instructions on the HP 3000. They are capable of moving 
any number of items from any arbitrary source location to 

any target location. Yet, the compiler’s code generators 
frequently have more information available about the 
operands of these instructions that could be used to advan- 
tage if other instructions were available. The code generators 
frequently know whether the operands overlap, whether 
the operands are aligned favorably, and the number of items 
to be moved. On microcoded machines, this information 
is lost after code generation and must be recreated by the 
microcode during each execution of the instruction. On 
the new HP computers, the code generators can apply such 
information to select a specialized millicode instruction 
that will produce a faster run-time execution of the opera- 
tion than would be possible for a generalized routine. 

Access to millicode instructions is through a mechanism 
similar to a procedure call. However, additional restrictions 
placed on the implementation of millicode routines pre- 
vent the introduction of any barriers to optimization. Mil- 
licode routines must be leaf routines and must have no 
effect on any registers or memory locations other than the 
operands and a few scratch registers. Since millicode calls 
are represented in SLLIC as pseudoinstructions, the op- 
timizer can readily distinguish millicode calls from proce- 
dure calls. Millicode calls also use different linkage regis- 
ters from procedure calls, so there is no necessity of preserv- 
ing the procedure’s linkage registers before invoking milli- 
code instructions. 

The only disadvantage of the millicode approach over 
microcode is that the initiation of a millicode instruction 
involves an overhead of at least two instructions. Even so, 
it is important to realize that for most applications, mil- 
licode instructions are infrequently needed, and their over- 
head is incurred only when they are used. The high-preci- 
sion architecture provides the frequently needed instruc- 
tions directly in hardware. 

@ 

Myth: RISC machines must implement integer 
multiplication as successive additions. 

Integer multiplication is frequently an architected in- 
struction. The new architecture has no such instruction 
but provides others that support an effective implementa- 
tion of multiplication. It also provides for inclusion of a 
high-speed hardware multiplier in a special function unit.’ 

Our measurements reveal that most multiplication oper- 
ations generated by user programs involve multiplications 
by small constants. Many of these occurrences are explicitly 
in the source code, but many more are introduced by the 
compiler for address and array reference evaluation. The 
new compilers have available a trio of instructions that 
perform shift and add functions in a single cycle. These 
instructions, SH1 ADD (shift left once and add), SH2ADD (shift 
left twice and add) and SHMDD (shift left three times and 
add) can be combined in sequences to perform multiplica- 
tion by constants in very few instructions. Multiplications 
by most constants with absolute values less than 1040 can 
be accomplished in fewer than five cycles. Negatively 
signed constants require an additional instruction to apply 
the sign to the result. Multiplication by all constants that 
are exact powers of 2 can be performed with a single shift 
instruction unless overflow conditions are to be detected. 
Additionally, multiplications by 4 or 2 for indexed address- 
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1 

hardwwe. 

ous d l  constants. 
"&e following examplea illustrate multiplication by vari- 

i 

Source code: 
4*k 

Assembly code: 
SH2ADD 8,0,9 

Source code: 

Assembly code: 
- 163*k 

SH3ADD 8,8,1 

SH3ADD 1,1,1 

SHlADD 1,8,1 

Source code: 
Nk) 

Assembly code: 
LDO - 404(30),9 

LDW -56(0,30),7 
LDWX,S 7(0,9),5 

; shiftr8(k) left2places, 
add to r0 (zero) into r9 

: shifttB(k)left3places,add 
to itself into r l  

; shift r l  left 3 places, add to 
itself info rl 

; shrnrl left1 place,addto 
k into rl 

: W ~ r e s y l t f r t U n O t o  
n a g t e ; ~ ~ r l  

; loadmaybaseaddress 
into r9 

; load unit index value ink, r7 
; multiply lhdex by 4 and 

loadelement into r5 

When neither operand is constant or if the constant is 
such that the in-line code sequence would be too large, 
integer multiplication is accomplished with a millicode 
instruction. The multiply millicode instruction operates 
under the premise that even when the operands are un- 

Myth: RISC machines cannot support commercial 
applications languages. 

e host machine 
are not corn- 

directly in hardware. 
The usual solution on conventional machines is to pro- 

vide a commercial instruction set in microcode. These ad- 
ditional instructions include those that perform COBOL 
field (variable) moves, arithmetic for packed decimal val- 
ues, alignment, and conversions between the various arith- 
metic types. 

In the new HP machines, millicode instructions are used 
to provide the functionality of a microcoded com 
instruction set. This aIlows the encapsu of COBOL 
operations while removing the possibilit away code 
expansion. Many COBOL millicode instructions are avail- 
able to do each class of operation. The compiler expends 

izes and whether 
selecting the appro- 

some COBOL operations are architected. These instruc- 
tions execute in one cycle but perform oper 

* several instructions. 
in-line code w%me a 

ent some of the m 
structions. For example, the DCQR (decimal correct) and 
UADDCM {unit add complement) instructions allow packed 
decimal addition to be performed using the binmy ADD 
instruction. UADDCM prepares an 

restores the result to p 
the addition. For example: 

rl %nd packsd ds 
r3 contahrs the co118tBnt x 

UADDCM1,3,31 ; pre-biasoperandintor31 
ADD 2,31,31 ; perfombinmyadd 
DCOR 31,31 ; correctresult 

A popular myth about RISC architectures is that they Millicode instructions support arithmetic for both 
cannot effectively support languages like COBOL. This be- 
lief is based on the premise that RISC architectures cannot 
provide hardware support for the constructs and data types 
of COBOL-like languages while maintaining the one-in- 
struction-one-cycle advantages of RISC. As a consequence, 
some feel that the code expansion resulting from perform- 
ing COBOL operations using only the simple architected 
instructions would be prohibitive. The significance of this 
is often overstated. Instruction traces of COBOL programs 
measured on the HP 3000 indicate that the frequency of 
decimal arithmetic instructions is very low. This is because 

packed and unpacked decimal data. This is a departure 
from the HP 3000, since on that machine unpacked arith- 
metic is performed by first converting the operand to 
packed format, performing the arithmetic operation on the 
packed data, and then converting the result back to un- 
packed representation. Operations occur frequently enough 
on unpacked data to justify the implementation of un- 
packed arithmetic routines. The additional cost to imple- 
ment them is minimal and avoids the overhead of convert- 
ing operands between the two types. An example of the 
code to perform an unpacked decimal add is: 



r l  and r2 contain unpacked decimal operands 
r3 contains the constant X96969696' 
r4 contains the constant XOfOfOfOf' 
r5 contains the constant X30303030 

ADD 3,1,31 ; pre-bias operand into r31 
ADD 31,2,31 ; binaryadd into r31 
DCOR 31,31 ; correctresult 
AND 4,31,31 ; maskresult 
OR 5,31,31 ; restore sum to unpacked decimal 

In summary, COBOL i s  supported with a blend of 
hardware assist instructions and mil l icode instructions. 
The compiled code i s  compact and meets the run-time 

I 

Concluslons 
The Spectrum program began as a jo int  effort of hardware 

and software engineers. This early communication allowed 
high-level language issues t o  be addressed in the architec- 
tural design. 

The new HP compi l ing system was designed with a re- 
duced-complexity machine in mind. Register allocation, 
instruction scheduling, and traditional optimizations al low 
compiled programs t o  make efficient use of registers and 
low-level instructions. 

Early measurements have shown that this compiler tech- 
nology has been successful in exploiting the capabilities 
of the new architecture. The run-time performance of com- 
p i led code consistently meets performance objectives. 
Compiled code sizes for high-level languages implemented 

. ^  , - f  ., , 

execution performance goals: 

'11 ~, C program for both the unoptimized and the optimized case. 
This example illustrates the code generated for the following 

i 

,: ' 

test ( ) 

int i, j; 

< -  

i 

i int a1[25], a2[25], r[25][25]; 

for (i = 0; i c 25; i+ +) { 
foro = O;j<25;j++){ 

r n] [i] = a1 [i] a2 n]; 
1 

1 : In the example code that follows, the following mnemonics are 
used: 

rp return pointer, containing the 
address to which control should 
be returned upon completion of 
the procedure 

argO first parameter register 
argl second parameter register 
SP stackpointer, pointing tothetop 

ofthecurrentframe 
mretO millicodereturn register 
mrp milllcode return pointer. 

The value of register zero (rO) is always zero. 

- - The following is a brief description of the instructions used: 
" L W  irnmed(rl),R R c r l  + immed. 

LDW immed(rl),R R c * ( r l  + immed) 
LDWX,S rl(R),r3 r3+*(4*rl + R) 
STW rl,immed(R) *(R + immed)crl 
STWS rl,immed(R) *(R + immed)trl 
STWM rl,immed(R) *(R + immed)crl ANDr2-R + immed 
COMB,<= rl,R,label Url < = R, branch tolabel 

branch to label, and put return address into r l  (for 
procedurecall) 
branch to address in r l  (for procedure return) 

1abel.rl 

O(rl1 
ADD rl,R,r3 r 3 t r l +  R 
SHlADD rl,R,r3 r3+2*rl + R , 

c 

11 ~ 2 ~ 3  r3.t4*r1 + r2 ' /  

SH3ADD r l  ,R,r3 r3+8*rl + R 
COPY rl,R R c r l  
NOP no effect 

In the following step-by-step discussion, the unoptimized code ' '  

- . -  .- 

on the left is printed in black, and the optimized code on the 
right is printed in color. The code appears in its entirety, and 
can be read from the top down in each column. 

Save callee-saves registers and increment stack pointer. Un- 
optimized case uses no register that needs to be live across a call. , 

LDO 2 7 w ~ ) ~ ~  STW 2,-20(0,Sp) 
STWM 3,27WO,~p) ' 

STw 4,-nsr)(OW 

Assign zero to i. In the optimized case, i resides in register 19, 

STW 0,-52(0,Sp) ' : c, 9Ft@ :,:e- ,":I- .-A+ ;r: L , 

Compare I to 25 This test is eliminated in the optimized case' 
since the value of I IS known 

LDw ' -52(0,Sp),l 
ux) 25(0),31 
COMB,<=,N 31,1,L2 

In the optimized version, 
moved out of the loop: 

{maximum value of j} 
{addressof a l }  
{address of a2} 
{address of r} 
(iitialvalueof lOO*i} 
{maximumvalueof 10O*i} 

a number of expressions have been 

*Do----- 2S(O);no - - 
LDO - 1 WSp).= 
LDO - 258(9p)24 
LDO -2756fsp),28 . 
LDO 0(0).4 
LDO m 0 ) 2  

Initialize j to zero, and compare j to 25. This test has also been 
eliminated in the optimized version, since the value of j is known. 
Note that J now resides in register 21 

L3 
STW 

, .  

. . . .  

* .  
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ciently with the low-level instructions provided by the 
high-precision architecture. A later paper wi l l  present per- 
formance measurements. 

specification. 

ventional architectures. 
lped achieve th i s  result. 
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LDWX,t 1 

Register 28 contains the address of r, and register 4 contains 
the value lOO*i, which is the offset of the ith row of array r. This 
is constant over the inner loop, and has been moved out. 

S,4# 
L6 

The loop begins with the load of al[i] into the first parameter 
register. This value has already been loaded in the optimized 
version, and need only be copied. 

LDO - 158(@),21 
LDW - 52(0,@),22 
LDWX,S 22(c1,21),argO COPY 233,argo 

The value of a201 is loaded into the second parameter register, 
and the multiply millicode instruction is called. In the optimized 
case, the address of a2[0] and the value of j are both already 
in registers. 

LDO - 256(sp),1 
LDW - 56(0,SP),l9 
BL mull,mrp BL mull,mrp 
LDWX.S 19(0,l),argl LDwx,s 21(0,24),argl 

Store the result into r[i][j]. The three SHxADD instructions cal- 
culate 1OO*i. Note that most of the following is loop invariant, 
and has been moved out of the loop in the optimized case. 

LDO -2756(sp),19 {addressofr) 
LDW - 52(0,sp),20 {valueof i} 
SHlADD 20,20,21 {Rl t 3 * i )  
SH3ADD 21,20,22 {r22+25*i) 
SHPADD 22,0,1 {rl t lOO*i} 
ADD 19,1,31 {addressofr+ 10O*i) 
LDW -56(O,sp),l9 (valueofj) 

SH2ADD 19,31,20 {add j*4 to address} SH2ADD 21 '3.31 
STWS mretO,0(0,20) {store} , STWS mret0,0(0,31) 

Increment j. 

1(21),21 

Compare j to the value 25 (already in register 20 in the op- 
timized version). The position after the conditional branch con- 
tains no useful instruction in the unoptimized case. In the op- 
timized version, the first instruction of the loop has been copied 
to this position, and the target adjusted to the following instruction. 
Becausethe branch has the nullification flag set (,N), the following 
instruction will not be executed when the branch is not taken. 

LDW - ss(O,SP),l 
LDO 25(0),31 
COMBF.<= 31,1,L6 COMBF,< = ,N 20,21 ,L6 + 4 
NOP LDWX,S 21(0,24),25 

Lf 

Increment it and test for the end loop. In the optimized 
version, induclion variable elaboration has removed the 1 OO*i 
multiplication, and added a new induction variable to contain 
that value. This value, in register 4, is now tested against a 
maximum value of 2500, contained in register 2. This branch has 
been scheduled like the previous branch. 

Finally, the registers are restored, and control is returned to 
the calling procedure. 

.......... ...I - .... -.--... < 
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A Sta id-/ lone Measurement Plottina 
System 
This compact laboratory instrument serves as an X-Y 
recorder, a low-frequency waveform recorder, a digital 
plotter, or a data acquisition system. 

by Thomas H. Daniels and John A. Fenoglio 

ANY PHYSICAL PHENOMENA are characterized 
by parameters that are transient or slowly varying. 
If these changes can be recorded, they can be ex- 

amined at leisure and stored for future reference or com- 
parison. To accomplish this recording, a number of elec- 
tromechanical instruments have been developed, among 
them the X-Y recorder. In this instrument, the displacement 
along the X-axis represents a parameter of interest or time, 
and the displacement along the Y-axis varies as a function 
of yet another parameter. 

Such recorders can be found in many laboratories record- 
ing experimental data such as changes in temperature, vari- 
ations in transducer output levels, and stress versus applied 
strain, to name just a few. However, the study of more 
complex phenomena and the use of computers for storage 
of data and control of measurement systems requires en- 
hancement of the basic X-Y recorder. Meeting the need, 
Hewlett-Packard's next-generation laboratory recorder, the 
HP 7090A (Pig. I), is a compact stand-alone instrument 

that can be used as a conventional X-Y recorder, a low-fre- 
quency waveform recorder, a digital plotter, and a complete 
data acquisition system. 

X-Y Reoorder Features 
The HP 7090A Measurement Plotting System offers many 

improvements for the conventional X-Y recorder user. In 
the past, X-Y recorders have been limited to a frequency 
response of a few hertz by the response time of the mech- 
anism. The HP 7090A uses analog-to-digital converters 
(ADCs) and digital buffers to extend the measurement 
bandwidth well beyond the limits of the mechanism. Each 
input channel has a 12-bit ADC capable of a 30-k;Hz sample 
rate. Since it is necessary to have about 10 sampleskycle 
for a good plot of the signal (remember, the minimum 
Nyquist rate of two sampleskycle only applies if there is 
a perfect low-pass output filter), this approach allows sig- 
nals with bandwidths up to 3 kHz to be recorded. 

The front-end amplifier presented many design chal- 

41 

i; 
3 

1 

Rg. 1. The HP 7090.4 
menf Plotting System 
many of the features of an X-Y re- 

' corder, @ low-frequency waveform 
" recorder, a digital plotter, and a 

data acquisrbon system in one in- 
strument that can be operated by 
itself or as part of a larger c m -  
puter-controlled system. 

0 
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lenges. High common-mode rejection, high sensitivity, low 
noise, and static protection were a few of the more difficult 
areas. X-Y and stripchart recorders have used floating input 
circuitry to allow users maximum flexibility in connecting 
signals to the measuring device. The degree to which input 
signals can be isolated from chassis ground is specified as 
the common mode rejection (CMR). Achieving a high CMR 
means that the input circuitry must not be connected to 
chassis ground. This requirement posed a dilemma for a 
microprocessor-controlled system like the HP 7090A, be- 
cause the microprocessing system must be connected to 
ground for noise prevention reasons. This design contradic- 
tion is resolved by using small independent power supplies 
for the front-end channels and by doing all of the data 
communication via optoisolator links. The point in the 
system where the floating circuitry is connected to the 
processing circuitry is shown by the optoisolator in the 
system block diagram (Fig. 2). 

The most sensitive range of the HP 7090A is 5 mV full 
scale. The 12-bit resolution of the ADC allows measure- 
ments as low as 1 pV. Input amplifier noise and all external 
switching noises must be kept well below 1 pV over the 
full 3-m~ bandwidth. In addition, the standard HP design 
requirement of electrostatic discharge protection offered 
an even greater challengethe same high-sensitivity float- 
ing input must be able to withstand 25-kV discharges di- 
rectly to the input terminals! (See article on page 32 for 
details about the front-end design.) 

The microprocessor is used for many functions, includ- 
ing signal processing 04 the raw analog-to-digital measure- 
ments. This makes it possible to calibrate the instrument 
digitally. Hence, there are no adjustment potentiometers 
in the HP 7090A (see box on page 22). During the factory 
calibration, a known voltage is applied to the input and 
the microprocessor reads the corresponding value at the 
output of the ADC. The calibration station then compares 
this value with the expected value. Any small deviation 
between the measured and expected values is converted 
to a calibration constant that is stored in the HP 7090A's 
nonvolatile memory (an electrically erasable, programma- 
ble read-only memory, or EEPROM). This constant is used 
by the internal microprocessor to convert raw measurement 
data to callbrafed measurement a during the normal 

@ 

operation of the instrument. In addition, offset errors are 
continually checked and corrected during measurements. 
This helps eliminate the offset or baseline drifts normally 
associated with high-sensitivity measurements. 

The use of a microprocessor also allows the user of an 
HP 7090A to select a very large number of calibrated input 
Goltage ranges. Conventional approaches to input ranging 
usually involve mechanical attenuator switches with about 
fourteen fixed positions corredponding to fourteen fixed 
ranges. An uncalibrated vernier potentiometer is used for 
settings between the fixed ranges. The HP 7090A uses dig- 
itally programmable preamplifiers and attenuators. The 
gain of this circuitry can be set to 41,000 different values. 
The microprocessor commands different gain settings by 
writing to the front-end control circuitry via the opto- 
isolator link. 

Low-Frequency Waveform Recorder Features 
The HP 7090A also can be used as a low-frequency 

waveform recorder. Triggering on selected input signal con- 
ditions allows a waveform recorder to capture transient 
events. In the HP 7090A, the triggering modes are expanded 
from the traditional level-and-slope triggering to include 
two modes of window triggering. The outside window 
mode allows for triggering on signals that break out of 
either an upper or a lower window boundary. The special 
inside window mode allows for triggering when the signal 
stays inside upper and lower window boundaries for the 
entire measurement period. The latter is the only effective 
way to trigger on a decaying periodic waveform like that 
caused by an ac power line failure (Fig. 3). 

To implement the sophisticated triggering capability de- 
scribed above, the HP 7090A uses digital triggering tech- 
niques. No analog circuitry is involved. The trigger decision 
is made by looking at the digitized input data that comes 
from the ADCs and comparing this to the desired trigger 
conditions set by the user. At the higher sampling rates 
the microprocessor is not fast enough to make trigger deci- 
sions unaided. Therefore, a semicustom LSI circuit is used 
to augment the processor in this area. This IC is a CMOS 
770-gate array especially programmed to do input data buf- 
fer management. It is shown in the system block diagram 
as the front-end mte arrav. 

Analog 
input 

Gain Regiater 

. ."ll.--.N 

Gate A m y  

Fig. 2. Simplified block diagram 
of the HP 7090A. 
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Recorder/Plotter Features 

used as a continuous X-Y recorder and as a full-perfor- 
mance digital plotter created many different performance 
objectives for the sophisticated servo system found in the 
HP 7090A. It uses three separate servo algorithms, each 

The desire to  produce a single product that 

. --- 
isure 

I '  

7090A Measuremt To determine these numbers. an offset calibration is Derformed 
Plotting System because its internal microprocessor: 
w Controls the front end 
w Determines the gain constants 

Performs the offset calibration 
rn Corrects the data. 

The microprocessor has the abHity to write to three main ports 
in the front channel (see Fig. 1). The first port controls the FET 
switches and relays that govern the coarse gain settings anc 
the relay that passes the input signal into the front-end amplifiers. 
The second port determines the amount of offset fed into the 
input signal. The third port establishes the attenuation that the 
fiqnal sees by means of the dgitally programmable amniifier. 

lis port governs the fine gain settings. 
There are 14 coarse gain settings covering a span of 5 mV to 

(as discussed later) and a voltage equal to the full-scale voltage 
is placed on the inputs of the channel. For example, if the full- 
scale voltage of the front end is 
signal is placed on the inputs. The 
measurement time base and 200 
digital samples are sent over the 
to the controller, an HP Series 2 
are not internally corrected; they are the direct output of the AI 
in the instrument's front end. These samples are averaged, a,,, 

werage A is put into the following formula: 

Gain constant = Ideal Volts A-S-20 

lWV, inclusive. While an HP 7090A is on the assembly line, it 
passes through a calibration of the gain of each of the three 

here DVM is the voltage read by a digital voltmeter of the inpur 
voltage to the front end, and Ideal Volts corresponds to the full- I 

irnple-and .. 



minus one. The above procedure for finding the gain constants 
is repeated for each of the 14 ranges, for each of the HP 7090A's 
three channels. 

The number 1974 in the above equation comes from the full- 
scale input to the ADC being mapped to 4022-2048+ 1974, 
rather than 4095, so that some margin can exist at the upper 
and lower limits of the analog-to-digital output. This allows for 
some offset variation in the front-end electronics. 

W8lt tor dobounce 

so FETground swltch I 
Wait for dobounce 

Result 
er  to desi 

: m n t  b) 

F -  
Closer? 

Closer? 

Y 

-1rhsapartto. 
remove 60-Hz noise 

Average mlnus deslrc 
value goes into RAM 1 

Fig. 2. Flow chart of front-end calibration procedure for each 
channel of the HP 7090A. 

in-Service Autocaiibratton 
At any point in time, there is some offset in the front end. This 

offset can change because of such factors as temperature and 
the age of the components. Therefore, there is a need to calibrate 
the instrument while it is in operation, and even during a measure- 
ment. The internal real-time clock is useful in telling the HP 
7090As internal processor when to perform an internal calibra- 
tion. Generally, such a calibration is doneevery 7tO 10 minutes. 

The procedure (Fig. 2) followed for correcting the offsets in 
one channel begins with opening the input relay-the one that 
allows the input signal to pass through the front end. Next, a FET 
is turned on, which grounds the input to the amplifiers. There 
are appropriate delays to let the relay and FET debounce and 
settle to fixed values. The processor is then able to induce the 
4DC to convert the zero input twice. The two samples come from 
the two sample-and-hold sections within the front end. The result- 
ing values are stored in RAM. Next, the offset port is written with 
a number equal to one plus the original value. The processor 
induces two more conversions, and the new values are compared 
with the previous values stored in RAM. If the new pair of values 
is closer to the desired zero value, based on internal computa- 
tions of the range and offset settings, the offset port value is 
incremented again and the process of comparison is repeated. 
If the new values are farther than the previous set from the desired 
value, then the offset port value is decremented twice, and two 
new values are found and compared with those for the original 
offset port number. If the new values are closer to the desired 
value, the pffset port value is decremented once and the process 
is repeated. The process stops when the most recent values 
from the ADC are fartherthan the previousvalues from the desired 
value. 

The processor reverses the trend of incrementing or decre- 
menting the offset port value once leaving the offset DAC at its 
optimal value, takes 16 samples one millisecond apart for each 
sample-and-hold, and averages these samples to eliminate any 
60-Hz noise. The two averages have the desired offset value 
subtracted from them, and the two differences are stored in RAM. 
The result is that the offset port is at its optimal value and two 
16-bit words are storL d that correspond to the residual offsets 
of the front end and each sample-and-hold. These words are 
called the software offsets, and are used in correcting the data. 
The zero FET is turned off and the input relay is closed. The front 
end is now calibrated and ready for sampling the external input. 

When the ADC samples data, its output must be corrected for 
gain and offset. Each time a conversion takes place, a 10-bit 
counter is incremented and the least significant bit is the index 
for which sample-and-hold (1 or 2) corresponds to the data sam- 
ple. The uncorrected data is inserted into the following formula: 

(D, -V,, - Ideal Zero) x GF(J) + Ideal Zero = D,,,ad 

where D, -corresponds t o - t k e - ~ ~ d  -data d-sampl~& 
iold i (i= 1 or 2), V,, equals the software offset for sample-and- 
nold i, Ideal Zero is the binary equivalent of the offset scaled to 
0 to 4095 where 2048 represepts a zero offset, and GF(J) is the 
gain factor word stored in the EEPROM plus a word for range J 
( J= l  through 14, corresponding to the 5-mV through 1OOV 
ranges). 

Stephen D. Goodman 
Development Engineer 

San Diego Division 
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adjust its acceleration profile to reduce the plot time by 
removing the need to come to a complete stop after each 
data point. When in the RECORD DIRECT mode, the digitized 
input signal data is fed directly to the servo control system, 
bypassing the data buffers, and the pen follows the input 
signal in the continuous (nonvector) manner of convh- 
tional X-Y recorders. 

The servo system uses the familiar dc motors and optical 
position encoders that are common to all modern digital 
plotters. But unlike such plotters, this servo system uses 
an algorithm that closes the servo loop and allows the 
device to emulate the analog-like characteristics of tradi- 
tional X-Y recorders. This is done by using the micropro- 
cessing system and another semicustom LSI circuit, a 
CMOS 2000-gate array. This hardware combination allows 
the processing system to model the characteristic block 
diagram of a traditional analog servo system in a manner 
fast enough to appear real-time to the user when recording 
slow-moving signals (under a few cycles per second). In 
this mode, the HP 7090A perfoms in exactly the same 
manner as a conventional X-Y recorder. 

Another feature of the HP 7090A is its ability to draw 
its own grids. No longer is the user forced to try to align 
the desired measurement to a standard inch or metric grid. 

specifies the required number of 
to one hundred, by using the HP 

front-panel controls, A firmware algorithm is invoked by 
pressing the front-panel GRID button, which then draws 
the specified grid between the specified zero and full-scale 
points. 

The graphs created by the HP 7090A can be used for 
obeerving the trends of the measurement. The high-accu- 
racy measurement made possible by the 12-bit ADC can 
be appreciated further by using the internal character 

generator to annotate any desired data point with 
digit resolution. 

The processor also makes possible other features rhat 
enhance the measurement display capability of the HP 
7090A. A calendar clock IC backed up with a battery and 
connected to the processor can be used to provide labeling 
of time and date at the push of a front-panel button. A 
nonvolatile memory (EEPROM) IC stores front-panel setup 
conditions, and two internal digital-to-analog converters 
convert digital data in the buffer memory to analog signals 
that can be displayed on a conventional oscilloscope to 
preview the buffer data, if desired, before plotting. 

Data Acquisition System Features 
The HP 7090A can be used as a computer-interfaced data 

acquisition system by using its built-in HP-IB (IEEE 488) 
110 capabilities. All setup conditions and measurements 
can be controlled remotely by using an extension of the 
HP-GL (Hewlett-Packard Graphics Language) commands 
tailored for measurements. The data in the buffer can be 
transferred to a computer. The computer can process the 
data and then address the HP 7090A as a plotter to display 
the results. 

The HP 17090A Measurement Graphics Software pack- 
age (see article on page 27) was developed to provide user- 
friendly access to the many measurement capabilities of 
the HP 7090A. 
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Digital Control of Measurement Graphics 
by Steven T. Van Voorhis 

HE OBJECTIVE of the servo design team for the HP 
7090A Measurement Plotting System was to develop Fig. I is a block diagram of the major components of the T a low-cost servo capable of producing quality hard- HP 7090A servo design for one axis, there being no signific- 

copy graphics output, both in real-time directly from the ant difference between the pen and paper axes for the pur- 
analog inputs and while plotting vectors either from the poses of this discussion. Fig. 2 shows the corresponding 
instrument’s internal data buffer or received over the HP-IB servo model. The plant is modeled as a system with the 
(IEEE 488) interface. The mechanical requirements of the transfer function of K,/(s+P,)(s+P,). Feedback of position 
design were met by adopting the mechanics of the earlier and velocity was found to give sufficient control to meet 
HP 7475A Plotter. This approach had the significant advan- the line-quality objectives. 
tage of a lower-cost solution than could have been achieved The prime mover for each axis is a low-cost dc servo 
with a new design. What remained then was to design the motor. Feedback of motor shaft position is provided by a 
electronics and firmware for reference generation and con- 500-line optical encoder. By detecting all state changes of 
trol of the plant (dc servo motor and mechanical load). the two-channel quadrature output of the encoder, 2000 

encoder counts per revolution of the motor shaft can be 
detected. This yields an encoder resolution of slightly bet- 
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Microprocessor -+ 
Flg. 1. Block diagram of HP 7090A 
servo system. 

ter than 0.001 inch at the pen tip. Since the feedback is 
derived from the motor shaft and not the pen tip, any plant 
dynamics between these two points are open-loop with 
respect to the servo system. It is therefore essential that 
the mechanics be "stiff" between the motor shaft and the 
pen tip within the 100-Hz bandwidth of the servo system. 

The digital electronics portion of the control loop is im- 
plemented in a single gate array of some 2000 gates pack- 
aged in a $&pin dual in-line package. The two-channel 
quadrature feedback signals from the optical encoders are 
decoded within the gate array to clock two 8-bit relative 
position counters, one for each axis. The position counters 
are cleared on each read by the microprocessor, in essence 
providing velocity feedback to the microprocessor. The mi- 
croprocessor integrates this feedback to generate position 
information. The power supply check circuitry provides 
the microprocessor with a 6-bit measurement of the motor 
drive supply voltage. 

In the feed-forward path, the microprocessor controls 
each motor by writing to two 8-bit registers for each axis 
in the gate array. The two registers control the period and 
duty cycle of the pulse-width-modulated motor drive sig- 
nals. Pulse-width-modulated motor drive circuits were 
chosen because of the ease of interfacing to digital systems 
and their efficiency advantage over linear drivers. Using 
the feedback of the motor drive supply voltage, the micro- 
processor can adjust the period of the drive signal to regu- 
late the gain of the drive path. This eliminates the expense 
of having a regulated supply for the motor drivers. The 
microprocessor varies the duty cycle of the pulse width 
modulator as dictated by the solution of the control equa- 
tions to achieve control of the plani 

When sampling the front-end channel at h i p  sample 
rates, there is not sufficient processing power available 
from the 6809 microprocessor to execute both the channel 
and the servo routines in real time. Thus, a multiplexer 
under microprocessor control is provided to allow the gate 
array to close a position loop about the plant without mi- 
croprocessor intervention. To avoid any instability caused 
by loss of velocity information, the position loop gain is 
halved when this is done. This allows the microprocessor 
to supervise the channel data transfer without the overhead 
of executing the servo routines. Other miscellaneous cir- 
cuitry in the servo gate array provides pen-lift control, the 
microprocessor watchdog timer, the front-end channel 

communications serializer, and a chip test. 
The real-time servo routines are initiated by a nonmask- 

able interrupt, which is run at a 1-kHz rate while plotting. 
Aside from various housekeeping duties, the main respon- 
sibilities of the servo routine are to maintain control of the 
plant by closing the feedback loop, and to generate the 
reference inputs to drive the system. 

Closing the feedback loop is always done in the same 
manner while plotting either vectors or data directly from 
the front-end channels. The relative position register is 
read and summed with the old plant position to generate 
the updated plant position. A copy of the relative position 
register value is multiplied by the velocity feedback con- 
stant to generate the velocity feedback term. The plant po- 
sition is subtracted from the reference input to generate 
the position error. From this, the velocity feedback term is 
subtracted and a deadband compensation term is added to 
generate the control value to be sent to the pulse width 
modulator. The power supply check register is read and 
the period of the pulse width modulator is adjusted to 
ensure a constant gain for the motor drive block. 

Plotting Data 
There are three separate reference generators that can be 

invoked, depending on the mode of plotting. The first is 
for direct recording of the front-end channel data, the sec- 
ond is used when plotting vectors parsed from the YO bus 
(HP-IB), and the third is used when plotting from the HP 
7090A's internal data buffer. When directly recording front- 
end channel data, the inputs are continuously sampled at 
250 Hz and the internally generated time base is updated 
at the same rate. The samples are scaled according to the 

@ref I I 
Motor Drive Plant 

Ftg. 2. Model of servo in Fig. 1 .  
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Pr setup conditions to provide the new desired 
position for the pen and paper axes. Were these inputs fed 
directly to the servos, high-frequency or noisy input signals 
could easily result in motor overheating. The new desired 
positions are therefore passed to the servos through a refer- 
ence profiler, which limits plant acceleration to 2g and 
maximum slewing speed to 50 inches per second. This 
limits the power input to the motors to a safe operating 
level and preserves acceptable writing quality. This ap- 
proach results in no overshoot when recording step inputs 
and provides good reproduction of 1-cm peak-to-peak 
sinusoidal waves for frequencies below 10 Hz. 

When the HP 7090A operates as a plotter, HP-GL* com- 
mands received over its HP-IB interface are parsed in accor- 
dance with the current graphics environment to generate 
new desired pen and paper locations. These new locations 
are represented as two-dimensional vectors relative to the 
present location. These vectors are passed to a vector refer- 
ence generator via a circular queue capable of storing up 
to 30 vectors. The vector reference generator takes vectors 
from the queue and put to the servoe to con- 
strain the plant to a cceleration and 75-cmls 

A short pause of 1 2  milliseconds between vectors ensures 
settling of the plant at the vector endpoints. The references 
for the paper and pen axes are simply scaled from the 
vector profile by the cosine and sine, respectively, of the 
angle between the vector and the positive paper axis. 

Vector Profiler 
Plotting from the internal data buffer could be performed 

in exactly the same manner as plotting vectors from the 
HP-IB interface. However, several attributes of this mode 
of plotting led to the development of a new reference 

‘Weit-Packard Graphics LWuaQe 
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Rg. 3. Profiling of two typical vectors paned from the HP-IS. 
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generator. The first is that for 
a string of 1000 vectors is a1 
data buffer. Thus, the overh 
rupt routines, the parser, character generato 
routines to create vectors is eliminated. Second, 
functions to be plotted are continuaus, the 1000 d 
form a contiguous string of short vectors [typical 
than 0.025 inch), all plotted pen down. Furthermo 
angle formed between any two consecutive vect 
ically very shallow. 

Consider the trivial case of plotting a dc signal from the 
internal data buffer. Assuming a 15-inch trace on €3-size 
paper, this amounts to plotting 1000 vectors, each of length 
0.015 inch, all along a straight line. Using the HP-IB vector 
reference generator would require 10 ms to profile the ac- 
celeration and deceleration of each vector, plus a 12-ms 
intervector delay. Thus, it would require 22 seconds to 
draw this 15-inch line, whereas if it were plotted as a single 
vector at 75 c d s ,  it would require just over 0.5 second. 
Therefore, a new vector profiler was designed for plotting 
from the internal data buffer wi 
ing throughput. This algorithm 
each vector endpoint. Rather, it 
point velocity so that the following 
met: 

The angle drawn at the vector endpoint is drawn with 
negligible error. 

rn The vector is not drawn in less than eight iterations of 
the servo interrupt routines (Le., 8 ms). 
A 2g deceleration to a full stop at the end of the vector 
string is achievable. 
Using this internal data buffer reference profiler, a 15- 

0 
inch dc signal trace is plotted in 8 seconds, bec 
second constraint. This is nearly a factor 
throughput improvement compared to using the HP-IB vec- 
tor reference generator. In fact, many functions are plottable 
in the 8-second minimum time with this technique, result- 
ing in throughput gains as high as eight. 

Why not apply the same profiling technique to vectors 
received over the HP-IB interface? The answer is twofold. 
First, vectors plotted from the bus are generally not contigu- 
ous strings representing continuous functions. They typi- 
cally have many pen upldown cycles, form acute angles, 
and are longer, all of which reduce the throughput gain 
using this algorithm. Second, applying the three conditions 
to determine the vector endpoint velocity requires addi- 
tional processing of each vector to check angles and deter- 
mine the distance to the end of the current string of vectors. 
To do this in real time requires that, as each new vector is 
received, the processor backtrack through the list of current 
unplotted vectors to see if their endpoint velocities can be 
increased. When the nature of the plot is such that little 
throughput gain is possible from the application of these 
algorithms, the additional processing load of executing 
them can actually result in a throughput loss. Therefore, 
this approach is restricted to plotting of the internal data 
buffers where the throughput gains are the greatest. 
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Measurement Graphics Software 
by Francis E. Bockman and Emil Maghakian 

48 

P 17090A MGS IS A SOFTWARE PACKAGE written 
for the HP 7090A Measurement Plotting System that H runs on HP’s Series 200 Computers. MGS allows the 

user to: 

rn Take measurements 
Set up measurements 

Store and retrieve measurement data to and from disc 
files 
Annotate measurements with text, axes, and simple 
graphics 
Manipulate measured data 

w Provide soft and hard copy of measured and manipulated 
data. 
MGS was written to provide a system solution to some 

of the general problems of measurement recording and data 
acquisition. It is designed to be used by scientists and en- 
gineers not wanting t6 write their own software. This soft- 
ware package extends the capabilities of the stand-alone 
HP 7090A. 

The package consists of two discs. The first disc contains 
the core of the system, the initialization routines, the library 
routines, and the memory manager. The second disc con- 
tains six code modules, one for each functional subsystem. 
The measurement setup module contains code to help the 
user specify the setup parameters relevant to the measure- 
ment. The measurement module allows one to start the 
measurement and the flow of measurement data into the 
computer. The storage-retrieval module contains code to 
store and retrieve measurement data and setup information 
to and from disc memory. The data manipulation module 
implements the ability to manipulate measurement data 
mathematically. The annotation module adds the capabil- 
ity of adding graphical documentation to the measurement 
record. The display module allows a user to display the 
measurement data taken and the annotation on either the 
computer’s display screen or on paper. 

Fig. 1. Screen layout for MGS. 

Since MGS is intended for the instrumentkientific mar- 
ket where users typically write their own instrument con- 
trol software, we used BASIC as the application language. 
Hence, users of the package can add their own code in a 
commonly understood language to tailor it to their specific 
needs. The application is distributed in source form. 

Human Interface 
The human interface is designed for both novice and 

expert users. We have made the assumption that all our 
users are familiar with X-Y recording, and that they have 
used recorders for data measurement. 

A human interface should be self explanatory and de- 
scriptive to accommodate a novice user. An expert user, 
on the other hand, requires an interface that is like a tool- 
one that does not hamper creativity and does not ask a lot 
of questions (conversational). 

MGS’s human interface is an extension of the HP 7090A’s 
human interface. There are no operational conflicts be- 
tween the HP 7090A and MGS. 

Screen layout is an important part of every human inter- 
face. We have made a special effort to ensure a consistent 
screen Iayout (Fig. 1) throughout the modules to improve 
the feedback to the user. Fig. 2 is an example of an actual 
CRT display for MGS. The definitions for the various ele- 
ments of the screen layout are: 
1) Subsystem Name. This is the name of the subsystem. 
Each box on the design tree (Fig. 3) is a subsystem. For 
instance, the DISPLAY functional area is composed of the 
CHANGE SETUP, SCREEN, and PLOlTER subsystems. The 
CHANGE SETUP subsystem also has under it the CHAN 
SCALE subsystem (not shown]. 
2) Arrow. The user can only change one parameter setting 
at a time. The arrow points to the parameter that is currently 
modifiable. The arrow is controlled by the softkeys UP (ko) 
and DOWN (k5). 
3) Parameter Name Area. This area of the CRT is where 
the parameter names are displayed. 
4) Current Parameter Setting Area. The current parameter 

Record  e r  No de 
Dependent  VI. <Ch 1 1  
I n d e p e n d e n t  <Time> 

Mea sur eme n t  < B u f f e r e d >  
Mode 

Tr tgger  
<Nanua 1 > Node 

P o r t  / P r e  <o. 00) 

T o t a l  T l m e  <1.00 S e e . >  

Ftg. 2. MGS control display. 
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setting is displayed on the same line as the parameter name. 
The parameter setting is enclosed by angle brackets. For 
example: 

necessary. 
: Returns the user up one level ofthe 

tree to the previous subsystem. 
EXIT (w)~  

paraml <param1 setting> 
--- >param2 <param2 setting> 

param N <param N setting> 

where parameter 2 is currently selected to be modified. 
5) Help Area. This area of the CRT is used to display help 
information to the user, which will consist of either the 
current valid range of parameter settings for the parameter 
designated by the arrow, or information on how to set the 
parameter, or what to set the parameter to. 
6) Message Line. This line is used by the software to dis- 
play messages to the user. When applicable, it will specify 
the permissible range of parameter settings. 
7)  Input Line. This line is used for entering text and num- 
bers when required by MGS. 
8)  CRT Softkey Labels. This area displays the labels for 
the HP 9000 Series 200 Computer's softkeys. The labels 
shown in Fig. 1 do the following actions when the corre- 
sponding softkeys are pressed: 

up (W : Places the arrow up one parameter. 
DOWN (kS) : Places the arrow down one parameter. 
DEFAULT (k3) : Sets the current menu parameters to 

their default settings. 
help (k4) : This softkey has an odoff toggle action 

An asterisk in the softkey label implies 
the help information will be dis- 
played in the help area on the CRT, 
for the current menu and all the fol- 
lowing menus. This softkey may be 
toggled on and off as many times as 

The primary user input to the software is the knob and 
the softkeys on the keyboard of the Series 200 Computer. 
Input from the keyboard has been limited as much as pos- 
sible. The softkeys provide the user with the ability to 
control the flow through the design tree (Fig. 3). 

The knob controls the setting of the parameter selected 
by the arrow on the menu. To set any parameter, the knob 
must be rotated first. The software will then react in one 
of the ways listed in Table I. 

Table I 

Parameter Type Sottware Reaction 

Enumerated Turning the knob will scroll through the current 
(i.e., specific list valid parameter settings for the specified 
of settings) parameter. 

Positional Turning the knob will move the graphics cursor 
in a left or right direction. Turning the knob with 
the Wff key held down wilI move the graphics 
cursor in an up or down direction. 

Turning the knob will cause the parameter set- 
ting to beincremented or decremented by a 
small amount. Turningthe knob with the SHlff 
key held down will cause the parameter setting 
to be incremented or decremented by alarge 
amount. 

Turning the knob will cause a message 
to be displayed on the message line andthe cur- 
rent setting to be displayed on the input line. 
Then the user may modify this setting by typing 
in the new setting and pressing the ENTER key 
when correct. 

Number with 
limited range 

Text or number 
with unlimited 
range 

I 

X-AXIS 

Labels I Markers - - 

Odd 

Lines 



The major philosophy in this human interface is “mod- 
ification, not specification.” This means that at all times 
the system settings are valid, and user can change one valid 
setting to another. The user is not burdened by descriptions 
or questions. The help area describes the current possible 
settings. It is placed to one side intentionally so it does not 
interfere with the man-machine interface. It can be turned 
on and off at the user’s discretion. 

The design of the human interface limits the number of 
error states. The user can only see an error message when 
entering a number from the keyboard or using the HP 7090A 
to enter a voltage. We have managed to achieve this goal 
by updating the next possible state lists every time a param- 
eter is modified. 

Overall Design 
There is a menu associated with every mode of the design 

tree (Fig. 3). The tree is three levels deep from the main 
level. The main level consists of the menu that allows 
access to the six major functional modules: measurement 
setup, measurement, display, annotation, storagehetrieval, 
and data manipulation. The softkeys are labeled according 
to their function; pressing a softkey will place the appro- 
priate menu on the CRT. The general rule is that a user 
exits a menu to the same menu(s) the user went through 
to enter the menu. Pressing the EXIT softkey returns the 
user up one level of the tree. The configuration level is a 
one-time process and is only entered at the start of the 
program. Pressing the EXIT softkev at the main level will 
Htop the programafter verifying that the user really wants 0 to exit. 

Core Library and Swapper 
The software package consists of a core or kernel that 

must always reside in memory. There is additional code 
for initialization and configuration that is loaded initially 
and then removed from memory after running. The six 
main code modules that implement the functionality of 
the system can be either resident in memory or loaded from 
disc, depending on the system configuration and available 
memory. There is also a library of utility routines that re- 
sides in memory with the kernel. The library contains code 
to handle the screen menus and data structures. Also, the 

code that communicates with the HP 7090A for data trans- 
mission resides in the library. 

A part of the system known as the swapper, or memory 
manager, is responsible for ensuring that there is enough 
memory available for requested operations. At program ini- 
tialization time, the swapper loads in the whole system if 
there is enough memory; if not, it loads just the main section 
of the system and the supporting libraries. Provided enough 
memory exists for the former action to take place, the swap- 
per will not need to take further action. Assuming there is 
insufficient memory to load the complete system, the swap- 
per will take actions when memory allocation is needed. 
The swapper handles all requests to enter a subsystem from 
the main menu. It first checks to see if the subsystem is in 
memory. If it is, no action is taken by the swapper and the 
subsystem is entered. If the subsystem is not in memory, 
the swapper checks to see if enough memory is available 
to load it in. If SO, it is loaded and entered. Otherwise, 
space in memory will be made available by removing other 
subsystems not needed. 

Data Structures for Menus 
As mentioned earlier, all the menus in MGS are consis- 

tent. There is a single data structure that contains all the 
data for a screen. The diagram in Fig. 4 gives a graphical 
representation of the logical structure and Table II defines 
the elements shown in Fig. 4. 

MGS prevents the user from entering error states. This 
task is done by changing o-strt and 0-cnt entries for a given 
attribute. All the valid entries for attribute p are always 
between o-strt(p) and o-sm(p)+oxnt(p). 

This data structure is built using one and two-dimen- 
sional arrays in BASIC. There are several copies of this 
structure, one for each screen layout. The data definition 
portion of MGS would have been much smaller and storage 
more efficient if BASIC had dynamic storage allocation 
capability like Pascal. 

Data Structure for the Knob 
MGS relies heavily on the knob of the Series 200 Comput- 

ers for input. At times the knob is used for entering a 
numeric value, such as volts at full scale, total time, etc. 
To make the knob more useful we had to make it nonlinear. 

Fig. 4. Graphical representation 
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TaMe I1 

atta 
altr-pos 

Pntr-wJ 

option$ 

Mnax 

trtle 
pointer 

old-pnlr 

M n i t l o n  

Holds parameter names 
Holds the encoded x-y position of the names on 

the screen. There is one entry for every name$ 
entry. Instead of using two integer arraysfor 
keepingthex andy positions, the following 
encodingscheme is used: 
namepos(i)=x(i)*512+y(i). 
This is done to conserve storage space. 

columns. 
Holds the number of entries in name$ and name-pos 

Holds the current parameter setting. 
Holds the x-y position of where parameters are to 

be displayed. 
Holds thex-y position of where the pointer is to be 

displayed for each parameter. 
A two-dimensional structure. Each row of this 

structure holds all the possible settings for the 
corresponding parameter. 

Holds the count of valid entries per row in the 
option table. 

Holds the current index of the item from the 
option table that is being displayed, that is, 
attt$(i)-optionb(Wnd(i)). 

Holds the logical first entry in option$. 
Holds the x-y position of where options are to be 

displayed. 
Maximum number of options in the option table. 
Holds a stringthat contains a screen name. 
Points to the current row in the option table. The 

UP and DOWN softkeys change the value of this 
variable. 

structure. 
Holds the number of parameters in the data 

Holds last value of the pointer. 

This means the step size of the knob is dependent on the 
current value of the knob. For example, when the current 
value for volts at full scale is between 0 and l V ,  the incre- 
ment is O.O5V, and when the current value is between 50 
and IOOV, the increment is 1V. 

To make this task uniform throughout MGS the data 
structure outlined in Fig. 5 is used. 

Each table contains several rows of data. Each row is for 
a given range. Table 111 defines the parameters. 

Table 111 

Element Definition 

increment 

bwer_bound 
upper_bound 
cJowjnd 
chijnd 
c-index 
C-CUrr 

Holds the value by which the current setting will 

Holds the minimum limit of the range. 
Holds the maximum limit of the range. 
Holds the first legal row of the table. 
Holds the last legal row of the table. 
Points to the current row in the table. 
Holds the current value. This is the variable that is 

be incremented. 

being incremented and decremented. 

c-low-ind and c-hi-ind are used to control the legal limits 
of the knob. Valid limits are kept between the high and 
low indexes. 

The following conditions are used for moving up and 
down in the table: 

If c-curr > upperhund(cjndex) thencjndex = cJndex+ 1 a 

It c-curr < lower_bound(cJndex) then c-index=c-index-l andccurr 
= lowerhound (cjndex) 

= upperbound (cjndex) 

Every time the value of c-index is changed, the following 
condition must be checked: 

If c-index > c-hund then c-index = c-low-ind 
If cjndex < cJowjnd then cjndex = c_hiJnd 

There is a copy of this data structure for every numeric 
parameter. Again, this is because of the limitations of 
BASIC. 

Measurement setup Module 
In this module, the user sets up an experiment and 

specifies dependent channels, independent channels, trig- 
gering mode, duration of experiment, type of experiment, 
etc. Accessible through this module are channel setup mod- 
ules. In those modules the user sets range, offset, and trigger 
level and width for each channel. If the measurement is to 
be conducted in user units, the user specifies the minimum 
and maximum user units, instead of range and offset. 

Up to now, most users of X-Y recorders had to convert 
their units to voltage levels, and then take a measurement 
in voIts. Finally, they had to convert volts back to their 
units. This is also the case with the stand-alone HP 7090A. 

MGS allows the user to set up an experiment in volts. 
This is provided for the sake of consistency with the stand- 
alone machine. In addition to volts, MGS gives the usm 
the capability of setting up and taking a measurement in 
some other unit system: displacement, acceleration, force, 
saturation, etc. To set up a measurement in volts, the user 
specifies range and offset settings for each channel and 
trigger information for Channel 1, just as for the stand-alone 
HP 7090A. 

When in user units, a measurement is set up by specifying 
the minimum and maximum possible readings in user units 
for each channel and trigger information for Channel 1. 
Trigger information is specified in user units. We believe 
that the availability of user units enhances the usefulness 
of MGS. For example, in measuring temperature in a chem- 
ical experiment, we can set user units limits for Channel 
1 to - 100°C and 100°C and set the trigger level to 10°C. 
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Measurement Module 
The measurement subsystem implements the ability to 

take measurements. It starts the measurement, and when 
data becomes available, receives the data and stores it in 
the software's channel buffers. There are three types of 
measurements: direct on-screen, direct on-paper, and data 
streaming. In direct on-screen measurements, the data is 
plotted to the screen in real time as the data is being stored 
in the software's channel buffers. Direct on-paper measure- 
ments emulate a traditional X-Y recorder and no data is 
sent to the computer. Data streaming mode allows up to 
ten thousand samples from each of three channels to be 
buffered into memory and then written out to a disc file 
for later processing. 

Display Module 
The display subsystem allows measurements and anno- 

tation to be displayed on the screen or on paper. There is 
a display setup mode that allows the user to specify which 
data channels of the measurement will be displayed. The 
display scale and the size of the displayed measurement 
can be adjusted. The output to paper can be formatted so 
that up to four measurements and their data can be plotted 
O K  onegzrge. - - - 

Data Manipulation Module 
In a measurement system the user may have a need to 

postprocess the recorded measurement. This module gives 
the user the capability of performing arithmetic operations 
on data channels. This subsystem has the capability of 
performing + , - , x , +, square root, square, log, and nega- 
tion. This subsystem gives the user the capability of build- 
ing algebraic equations with two operands and one 
operator. Operands can be any data channel or constants 
or the result of the previous operation. The results can be 
displayed using the display module. The last five opera- 
tions are shown in a small window. This is done to simplify 

the task of computing complex equations through the 
chaining of operations. For example, when measuring volt- 
age and current, the subsystem can be used to compute 
power by multiplying the voltage and current readings as 
shown in Fig. 6. Manipulations not provided directly by 
the software can be applied to the data sets through user- 
written programs. 

Storage and Retrieval Module 
The storage and retrieval subsystem allows the user to 

save not only the measurement data but also the current 
measurement setup, annotation, and display setup param- 
eters. When retrieving data, the users can select subsets of 
the data to be retrieved. For instance, the annotation can 
be stored from one measurement and retrieved into another. 
The measurement setup parameters will always be re- 
trieved along with the measurement data because the data 
itself does not have meaning without its setup conditions. 
There is a file header at the beginning that contains infor- 
mation about where the data and setup parmeters are lo- 
cated in the file. 

Annotation W u l e  

markers, and an annotation box on the 
It is not intended to do general*purpose drawing or to be 
a graphics editor. Some features are: 
rn Axes and grids feature automatic tic labeling in the units 

are also available. 
adding documentation 

ed, or deleted at will. 
m Lines can be used for simple drawing. 
w Markers annotate points on the data line and they can 

be automatically labeled with their respective x and y 
coordinates. The cursor can be used to step through 
points on the data line to position the marker. 
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Analog Channel for a 
Wa\r !form Recorder 

[E ANALOG CHANNEL of the HP 7090A Measure- 
conditions and digitizes the 

ignals connected to the inputs of the instrument. 
The analog signals are amplified, filtered, and digitized by 
a series of stages as shown in Fig. 1. After the signals are 
digitized, the equivalent binary words are processed 
through a series of calibration procedures performed by 
the microprocessor to provide the full dc accuracy of the 
machine. The architecture of the channel is designed with 
flexibility of operation as a goal. Thus, the microprocessor 
is used to set up the multiple stages for coarse and fine 
gains and offsets. This allows the execution of zeroing and 
calibration routines and eliminates manual adjustments in 
the manufacturing process. (No potentiometers were used 
in the design. See box on page 22.) The analog channel has 
floating, guarded inputs. Through the use of isolation and 
shielding, common mode rejections of >140 dB for dc and 

I 

Gain I 

I 
Protection 

LOW-Frequency 

>lo0 dB for 60 Hz are obtained. 

Preamplifier 
The analog channel preamplifier (Fig. 2) uses a set of 

low-noise, low-leakage JFETs and low-thermal-EMF relays 
to switch the inputs of amplifier A1 to the gain and attenu- 
ation string of resistors. The amplifier switches are 
nected in such a way as to set the 14 major ranges fo 
HP 7090A. (Other ranges are provided by a posta 
as will be explained later.) The ranges are set by 
processor's loading the appropriate words in front-end re- 
gisters 1 and 2. Amplifier A2 is used as a buffer to drive 
three different circuits: 

The internal guards that minimize printed circuit board 
leakage in critical areas 
The oxdoff and biasing circuits for the range 
switches (as set by front-end registers 1 and 2) 

setting 

Filter Sampler +- I IF;;; 1 
I 

Internal 
Bus 

I 
I 
I 
I 
I 
I 
I - -  

- 1S'v 5 i  

* Mici 
To 

Board 
roprocessor 

F@. 1. 
channel. 
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Fig. 2. Analog channel preamplr- Internal 

rpose instrument, temporary 
. For this reason, protection 

circuits are necessary. Very often these circuits tend to 
degrade amplifier performance. This situation was avoided 
in the HP 7090A by using the circuit shown in Fig. 3. 

If there is no way to prevent ESD from penetrating the 
machine, the next best thing is to shunt the transient to 
ground through a preferential path of impedance lower 
than the rest of the circuits. The primary ESD clamp is 
actuated by electron tube E l  and the source inductance. 
E l  has a very large resistance and low capacitance when 
in the off state. Hence, it does not degrade the amplifier's 
input impedance. Capacitor C1 turns off E l  after the surge. 
Resistor R1 discharges C1. This circuit can only limit VI 
to several hundred volts because of the insufficient speed 
of E l .  

The secondary protection devices clamp the input to a 

to handle signals as low as a few microvolts with a 
bandwidth spanning from dc to a few kilohertz, the design 
uses carefully chosen components such as the precision 
low-noise amplifiers A1 and A2 and metal-film resistors 
of small values (to avoid white noise). In addition, printed 
circuit board layout becomes critical. Hence, extensive use 
of guardingand shieldingof critical areas is done, including 
the use of Teflon'" cups for the input node. 

Transistor 4 3  is part of the circuitry used in an autozero- 
ing routine to eliminate channel offsets caused by initial 
component errors, temperature drift, and aging. 

ESD and Overload Protection 
Front-end inputs are likely to experience ESD (electro- 

static discharge) transients since they can be touched by 

I A A + 
Common 

Plane 

Flg. 3. lnput protection circuitry. 
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voltage less than the maximum allowable voltage for Al. 
[This is also used as the dc overload protection.) The other 
circuits minimize leakages. Buffer A2 sets rectifiers CR1 
and CR2 to zero bias by feedback. Leakage caused by Zener 
diodes VR1 and VR2 is provided by A2 and not by the 
minus node of AI. 

To avoid sourcing current for the bottom plate of C1 from 
the common plane, and since there is no way to obtain a 
simultaneous turn-on of El and E2, C2 is installed between 
the low and guard terminals to provide the current. 

RV1 is a voltage clamp device used to protect the devices 
between the low and guard terminals against overloads 
between the input terminals or against transients applied 
to the low terminal. The final shunting of the ESD transient 
to earth ground is provided by electron tube E2. 

In a circuit such as this, care must be taken to shield or 
orient the components and connections to prevent reradi- 
ation of noise to other areas. In addition, the breakdown 
voltages of interconnections should be much higher than 
the breakdown voltages of the devices used. These protec- 
tion circuits proved successful during testing by enduring 
many thousands of electrostatic discharges up to 25 kV 
that were applied to the inputs. 

in the microprocessor as indicated by the cha 
calibration equations. D2 is a fixed attenuation rat 
is used as a coarse gain adjustment to account foi . 
gain error caused by component tolerances. 

Postampllfier 
The postamplifier stage has the following functions: 
It amplifies the signal to a voltage level that is suitabl 
for the digitizer 

rn It contains a 3-kHz low-pass active filter 
rn It provides an offset voltage that is programmable by the 

The programmable offset is accomplished by the use of a 
low-cost DAC. This converter is used primarily for subtract- 
ing out the analog channel's subsystem offset each time 
the ranges are changed, and for periodically performing a 
zero calibration to account for drifts. The offset DAC per- 
forms a coarse offset subtraction in hardware. To ac- 
complish a fine offset calibration, the residual offset V,, is 
first found by the offset calibration routine (see Fig. 4). 
This offset is subtracted from the incoming data during the 
data correction routine, which is executed after the input 
signal is sampled. 

microprocessor. 

I 

Vernier Gain Stage 
The digitally programmable vernier stage consists of a 

12-bit multiplying digital-to-analog converter (DAC) and 
an operational amplifier. Its main function, in conjunction 
with the preamplifier, is to provide the numerous cali- 
brated ranges of the machine. The gain in this stage is 
represented by G =  - D/4096, where D is the decimal equi- 
valent of the binary word that is applied to the DAC. The 
number D is equal to the product of two scaling factors D1 
and D2. D1 accounts for the vernier gain. It is derived from 
the range entered by the user and from internal routines 

I Do A-to-D conversions, and by 
iteration on the loaded word in 

the affset DAC, gel the offset as 
close to zero volts as wssibla 

Stom V, In RAM I 

Fig. 4. Flowchart of offset calibration routine. 

a4 HF\NLEIT-PACICARO JOURNAL JANUARY 1986 

A-to-D Conversion Circuits 
This section consists of one sampling stage with two 

sample-and-hold devices connected in paralle1 and requir- 
ing an analog multiplexer, buffer and control logic, and a 
12-bit analog-to-digital converter (ADC). Two sample-and- 
hold ICs are used here to be able to perform an A-to-D 
conversion on a sample while simultaneously acquiring 
the next sample (see Fig. 1 on page 22). After the conversion 
is completed, the sample-and-hold stages are swapped by 
the sequencing circuits and the cycle is restarted. This 
eliminates the acquisition time wait for a conversion cycle, 
thereby aIlowing the use of a slower low-cost converter. 

Studies have shown that the eye can distinguish very 
small fluctuations in a ramp waveform when it is plotted. 
For this reason, a 12-bit-resolution ADC had to be used, 
since the HP 7090A can plot the digitized waveform. 

Common Mode R e p l o n  Ratio (CMRR) 
The CMRR specifications of the HP 7090A demand a 

high degree of isolation between the analog channel and 
ground. This requires resistances on the order of gigohms 
and a maximum capacitance to ground of about 25 
picofarads. There are two main areas that provide the iso- 
lation-the optical interface and the channel power supply. 

P s2 
9 

LA3 
, .  

Fig. 5. Simplified error model for HP 7090A front en& 
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(G+aG)V, - - - - - - - - - - -/I Line 2: y=m,x c 

Fig. 6. To calibrate gain, the response represented by line 2 
is mapped into the ideal response indicated by line 1. 

The optical isolators provide all of the digital communi- 
cations with the system processor in serial form. This is 
done with a small degradation in capacitance and resis- 
tance to ground. In addition, internal shields in the op- 
tocouplers provide common mode transient rejection of at 
least 1000 V/ps. 

The most critical component in the channel power sup- 
ply is the isolation transformer. To obtain a low isolation 
capacitance, three box shields are used. It can be dem- 
onstrated that three box shields will eliminate the most 
common ground loops associated with a floating front end.’ 
Box shields and special manufacturing techniques minimize 
and cancel currents induced by the transformer into the 
preamplifier circuits. With this and careful pin assignments, 
low coupling capacitances in the hundreds of femtofarads 
are obtained. 

The analog channel printed circuit board is placed in a 
sheet-metal shield to decrease coupling capacitances to 
ground and to minimize external source interference into 
the sensitive amplifiers. 

Modern analog front ends often include digital and 
analog signals in the same set of circuits. This can become 
troublesome when there is a need to handle microvolt-level 
signals at high accuracy and wide bandwidths. Detailed 
attention to printed circuit board layout makes it possible 
to obtain high-quality signal conditioning. For this pur- 
pose, isolation of internal grounds and of analog and digital 
signals was done. Ground planes are also used to minimize 
intersignal capacitances. In addition, well-known tech- 
niques* are used throughout the board for isolating powez-, , ~ 

Fig. 5 shows a simplified example of an error mouel. in 
this case G = idegl gain, V, = input signal, AG = gain error, 
V, = signal at the ADC, V,, = offset error, and [V,] = quan- 
tized value of V,. 

To calibrate the sampled signal, we first sample the sys- 
tem offset by closing S2 and opening SI. This is done in 
the HP 7090A during the offset calibration routine outlined 
in Fig. 4. This yields: 

Vox = (G+AG) V,, 

Then, we acquire the input signal by opening S2 and 
closing SI, which gives: 

Voz = GV, + AGV, + GV,, + AGV, 

After offset compensation we get: 

VOs = V, - V,, = GV, + AGV, 

To do a gain calibration, we map response line 2 in Fig. 
6 into line 1 by the procedure explained in the box on page 
22. This yields the gain calibration factor G/(G+AG). This 
factor is obtained for each one of the 14 major ranges of 
the machine. As mentioned before, these factors are stored 
in the HP 7090A’s internal nonvolatile memory. 

Accuracy in other ranges that use the vernier is guaran- 
teed by the circuit design. 

The gain calibration requires a final multiplication: 

Voq = Vo3 (GI(G + AG)) = [V, (G + AG)]IG/(G + AG]] = GV, 

This last quantity is indeed the amplified input voltage, 
which is the desired quantity. 

Other more complex models, similar to the one above, 
are used to account for other operations of the machine 
such as user’s entered offset, factory calibration routines, 
and combinations of interacting errors. The exact equations 
used for the corrections in firmware are also in a quantized 
form. 
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supply output impedances and ground returns from 
diffSeTt%Ei@e%. - - 
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Computer Calibration 
To preserve accuracy under different temperature condi- 

tions and to compensate for the aging of components, the 
HP 7090A’s microprocessor executes a series of calibration 
routines. These same routines allow the use of automated 
gain calibration at the factory. The calibration factors thus 
obtained are stored in a nonvolatile memory in the HP 
7090A. 

Every stage in the front end adds errors to the signal. 
The procedure followed is to lump all errors, refer them 
to the inputs, and separate them into gain and offset errors. 
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t Usability Testing: A Valuable Tool for PC 
Design 
by Daniel 6. Harrington 

Evaluating the experiences of users unfamiliar with a new 
computer product can provide valuable guidance to the 
designer and the documentation preparer. 

KEY ELEMENT IN THE DESIGN of a personal com- 
puter is how easy it is for a new owner to set it up, A get it running, and do basic tasks such as printing 

output, loading softwak, entering data, and handling files. 
To evaluate these qualities, HP’s Portable Computer Divi- 
sion has conducted three usability tests, two on the integral 
PC (one before, one after introduction) and one on The 
Portable (after introduction). A single test program uses 
ten reviewers, one per day, each performing for pay the 
same set of tasks on the selected computer model. The 

e selected to meet the profile of the 
expected buyer of the computer. Each reviewer’s experi- 
encB is videotaped, and an observer in the test room con- 
stantly monitors the reviewer’s progress [see Fig. 1). When 
a reviewer becomes frustrated enough to call the dealer for 
help, the observer acts as the dealer and offers the help 
requested. Product engineers and management are invited 
to observe the test sessions. The results of the test, including 
suggestions for product improvement, are widely distrib- 
uted. Finally, a reviewer debriefing meeting is held where 

d in the testing room at the division. 

Many of our competitors emphasize the human interface. 
They understand that buying decisions are affected both 
by the reported length of time it takes new users to get 
familiar with a computer and the difficulties users have 
encountered in using it. Corporate buying decisions are 
especially influenced by the computer productivity ex- 
pected from a particular brand or model. 

Magazine evaluations also focus on user-friendliness. 
Perhaps you’ve read, as we have, magazine reviews of new 
computers, in which the writers take great pleasure in de- 
scribing their frustrations in trying to use the computers. 
Such negative reviews must hurt sales, just as positive 
reviews must help sales. 

Customers do not like to be frustrated by incomprehen- 
sible error messages, manual jargon, confusing instruc- 
tions, peripherals that won’t work when connected, and 
all the other problems that a first-time user of a personal 
computer too often encounters. Usability testSng offers an 
effective way to measure and reduce such problems. 

the reviewers and HP engineers can discuss the usability 
of the product. 

Why Have Usablllty Testing? 
Hewlett-Packard is committed to quality and customer 

satisfaction. To know if we’re satisfying our customers, we 
must measure our performance. Usability testing provides 
one means of measuring product quality and customer 
satisfaction. This method has several advantages: 

Product engineers can observe users (the reviewers) 
using their products, both during product development 
and after market introduction. Tests conducted during 
product development allow changes in the design of the 
product to satisfy the observed needs of users. 
It’s a controlled measurement allowing statistical evalu- 
ation and comparisons of user satisfaction before and 
after product changes are made. 
Product engineers can meet the group of reviewers at a 
debriefing meeting. At this meeting, engineers can hear 
what the reviewers liked and did not like about the prod- 
uct, and the product changes they wish HP would make. 
This meeting also allows dialog between engineers and 
reviewers. 

part of this type of product. 

4 

It’s an especially effective test of documentation, a key 
* 3 h I being tested. Note the observer and monitor in background. 



How is UsabilRy Testing Done? 
We learn from product management the profile of the 

expected buyer of the computer we’re about to test. We 
then seek people in the local community who fit that profile 
and who are not HP employees. We find most of them are 
excited about spending a day with us playing with a new 
computer. As a token of our appreciation, we pay reviewers 
for their help. 

We encourage HP people to observe the usability test. 
We want those responsible for the product to watch and 
listen to these reviewers as they work. While it can be a 
humbling experience to see how the results of our efforts 
somehow fail to work in the reviewer’s hands as we in- 
tended them to, such experiences are vital to developing 
a product that satisfies users. 

Each reviewer spends a day using the computer in a 
simulated work environment. We equip the testing room 
with a table set up like a typical office desk, complete with 
plant and in-basket. At best, the test situation in which the 
reviewers find themselves is still foreign, but we try to 
create an atmosphere that is at least partially familiar. We 
feel the closer the testing environment is to a typical user’s 
workplace, the more valid our results will be. 

An opening questionnaire gives us the reviewer’s com- 
puter experience and educational background. This infor- 
mation helps us qualify each reviewer’s experiences during 
the test session. This questionnaire also confirms that the 
reviewer meets the profile of the expected buyer. 

Before users operate a computer for the first time, most 
have studied the market and already know something about 
the particular computer they have chosen. Reading 
brochures and reviews, having discussions with dealers 
and other users, and watching others use the computer 
allow a user to set up and run a new computer more effi- 
ciently than one who has never seen nor heard of the prod- 
uct before opening the box. We can’t completely duplicate 
this knowledge, especially for a product still under de- 
velopment, but we do give each reviewer a description oi 
the product before the test session begins. For a released 
product, we mail a brochure and data sheet to each reviewer 
a week before the test starts. 

The reviewers start with the computer in its shipping 
carton. We give each of them the same set of tasks or ob- 
jectives, and ask them to perform them in any order they 
desire. 

A video and audio recording of each session is made. 
These recordings serve several purposes: 
8 Theysupp&+hemtwthe obsewemdces et sach session. 
H They are available for study after the test is over. 
w They provide the raw material for the summary tape 

We urge reviewers to comment freely. The audio portion 
of the tape is often the most important. We want reviewers 
to tell us what they’re doing, how they feel, what they like 
and don’t like about the product; in short, we want almost 
a stream-of-consciousness narrative. 

An observer is always in the room with the reviewer. 
The observer uses notes taken during the usability test to 
write the test report. When the observer needs more opin- 
ions and information from the reviewer, the reviewer is 
asked appropriate questions during the test. 

shown at the reviewer debriefing meeting. 

0 

When we started these tests, we were concerned about 
the observer sharing the test room with the reviewer. The 
standard testing arrangement used by IBM’ consists of two 
rooms separated by a one-way mirror. The reviewer is alone 
in one room, which is identical to a typical office. The 
observers, video cberas ,  and other equipment are in the 
other room. We started with and still use only one room, 
but we feared the observer’s presence would inhibit the 
reviewer’s actions and comments, making the results less 
valid. Therefore, we specifically asked reviewers who 
helped us with our first test if the observer’s presence hurt 
the effectiveness of the test. They told us the nearness of 
the observer helped, rather than hurt the process. They felt 
they were talking to a human rather than a machine, which 
made it easier to comment freely. They also appreciated 
the reviewer’s encouragement and requests for comments. 

We also emphasize that the product is on trial, that the 
reviewer cannot fail. It’s important that reviewers feel at’ 
ease so that their experiences are as close as possible to 
those real users would experience. However, some review- 
ers still feel under some pressure to perform, and try to 
finish the tasks as fast as they can to do a good job. An 
observer can help reduce this pressure by creating an at- 
mosphere of you-can’t-fail informality. This is another ad- 
vantage in having the observer share the test room with 
the reviewer. 

The reviewers have only two sources of help: 
H The manuals, disc-based tutors, on-screen help mes- 

sages, and other material delivered with the product. 
Their dealer (the observer). 
Reviewers that reach a level of frustration that would 

produce a call to their dealer if they were using their own 
computer in their home or office can pick up the uncon- 
nected phone on their desk. This action tells the observer 
that a dealer call is being made. The observer then acts as 
the dealer and gives whatever help is needed. The number 

m. 2 HP‘s lntegraf Personal Compute? is a powefful multi- 
tasking computer system in a 25-lb transportable package. 
Designed for technical professionals, it features a built-in 
printer, display, disc drive, and HP-If3 interface and the HP-UX 
operating system, HPs version of AT&T Bell Laboratories’ 
UNIX” operating system. 



of such calls and the reasons for them can tell us a lot 
about what product features are hard to understand or not 
working well. 

A closing questionnaire asks for opinions about the prod- 
uct. In general, this questionnaire asks two types of ques- 
tions. One type asks reviewers to rank their level of agree- 
ment or disagreement with a number of positive statements 
about various features of the product, such as: 

The owner’s manual is easy to understand: 
Tha error messages are easy to understand. 
I like the display. 
Each reviewer is asked to rank each statement from 1 

(strongly agree) to 5 (strongly disagree). The other general 
type of question asks reviewers to comment on various parts 
of the product, such as manuals, keyboard, display, help 
messages, etc. Often, a product feature like a manual is the 
subject of both a ranking question and an essay question. 
Another common question asks reviewers to identify the 
most difficult or the three most difficult tasks. That ques- 
tion is followed with a ranking question something like 
this: “Considering the difficulty of the task you identified 
as the most difficult, the imtructions for that task are as 
clear as they can be.” 

The video recorder is stopped while the closingquestion- 
naire is completed. Then it is turned on again to record 
the closing interview. The observer chooses some closing 
topics to discuss further, generally about product areas 
reviewers felt needed improvement. These interviews often 
produce some of the best and most useful video footage. 

About two weeks after the last test session, the reviewers 
and the product engineers meet together. This is a very 
useful meeting. It allows the product engineers (hardware, 
software, electronic, system, packaging, manual, quality, 
production, etc.), management, and anyone else who is 
interested to hear reviewers’ opinions directly. By asking 
questions, the audience can draw out additional reviewer 
opinions and suggestions. 

ort is widely distributed. This report describes 
ves the reviewers’ opinions and suggestions. 

How Has Usability TWlng Hdpsd? 
During the preintroduction test of the Integral PC,’ re- 

viewers felt the initial mechanical design did not give an 
impression of quality and ruggedness. A description of this 
computer will help to explain their complaint. The Integral 
PC (Fig. 2) is a transportable computer. The bottom of the 
keyboard is the front face of the closed-up computer, and 
the carrying handle is attached to the top, which opens up 
and folds back to release the keyboard and reveal the built- 
in flat-panel display, 3Vz-inch disc drive, and ThinkJet 
printer. The main reviewer complaint about the apparent 
lack of ruggedness centered on the mechanism that controls 
the opening and closing action of the top cover. This mech- 
anism had been tested by engineering and had satisfied 
their tough strength specifications. However, the reviewers 
felt the looseness of the mechanism suggested weakness 
and sloppy design. 

The mechanical engineers accepted the reviewers’ judg- 
ment that the top cover mechanism should not only be 
rugged, but should also appear rugged. They made design 
changes that largely eliminated the looseness of this mech- 

anism, and the postintrod 
gral PC told us that they did 
who judged this computer 
computer did give an impression o 

The Integral PC’s on-screen tutor, a new type 
tion product for our division, incorporated 
as a key item in its development schedule. 
tive acceptance of the final tutor would 
possible without the user feedback given by two informal 
usability tests and a final, formal usability test conducted 
during product development. 

The Integral PC Setup Guide (Fig. 3) is another new type 
of instruction product for our division. This guide uses a 
series of pictures with very few words to tell a first-time 
user how to open the computer’s case, connect the keyboard 
and optional mouse, and start the on-screen tutor. Other 
sections of this setup guide tell the user how to install the 
printhead cartridge for the built-in ThinkJet printer, how 
to load fanfold paper into the printer, and how to prepare 
the Integral PC for transporting. 

Usability testing was incorporated into the development 
schedule for this setup guide. These tests indicated the 
need for major ch in the initial guide. The postin- 
troduction usabili proved the final setup guide was 
very useful, and suggested some further improvements. 

The preintroductfon usability test of the Integral PC 
suggested improvements in the packaging. The initial ship- 
ping carton design we tested included a thin, flat parts box 
imide the shipping carton. Either of the two large faces of 
this parts box could be opened easily by users, but the box 
would reveal all of its contents only when one of these 
faces was opened. If the other face was opened, many of 
the smaller parts were well hidden. When the reviewers 
pulled this parts box out of the shipping carton, chance 
would dictate which large face was up when the box was 
laid on a table. If the wrong side faced up, the wrong side 
was opened, and parts were lost. 

The packaging engineer observed some of the reviewers 
opening the wrong side, and had a cure specified before 

Fig. 3. Integral PC Setup Guide, a 70-page guide whose 
development depended on usability tesfing. 
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the sequence of usability tests was over. He specified that 
the words “Open this side” appear in large letters on the 
right side, and the words, “Open other side” appear in 
large letters on the wrong side. This improved parts box 
was tested during the postintroduction usability test. Dur- 
ing this test, the reviewers proved that people often don’t 
see what they look at and don’t read what they see. In spite 
of the words “Open other side” printed in large letters on 
the wrong side of the parts box, several reviewers opened 
the wrong side anyway, and did not see or remove the 
smaller parts, including the ink cartridge for the ThinkJet 
Printer. One reviewer suggested that we design our parts 
box to open only one way. Again the packaging engineer 
responded quickly, and the Integral PC parts box now opens 
only one way. This example shows the importance of test- 
ing the cures inspired by previous tests. 

During the preintroduction test of the Integral PC, review- 
ers felt the disc drive busy light was too dim. Engineering 
responded, and the production computer now has a satis- 
fyingly bright light to indicate disc drive activity. 

Some help screens provided by The Portable (Fig. 4), 
and displayed by pressing a function key, do not state 
clearly how to get out of the help screen. One help screen 
set, consisting of a number of screens, does not tell the 
user how to exit until the fourth screen. The software group 
in engineering listened to the reviewer’s comments about 
this. The Portable PLUS, developed after The Portable, also 
uses help screens, but the first screen of every help screen 
set clearly tells the user how to exit. 

The Portable includes a disc-based diagnostic program. 
This program was loaded into the memory of the first 
shipped units of The Portable, and its label was shown in 
the PAM’S (Personal Application Manager’s) main screen 
at the far left. When The Portable’s display was first turned 
on, the selection m o w  pointed to the diagnostic program’s 
label. During the usability test, several reviewers pressed 
Start on the keyboard to see what would happen. This would 
start the diagnostic program, causing much confusion. 
Again engineering listened, and they specified that this 
disc-based diagnostic program no longer be loaded into 
The Portable before shipment, although the disc containing 
this program continues to be included with the product. 

The Portable was the first computer from this division 
to use three-ring binders for its manuals. We elected to put 
five separate manuals into one binder separated by tabs, 
since these five manuals fit Comfortably in one binder, and 
doing so reduced product cost. A second binder was used 

ual. Even though we stated clearly (we thought) on the 
second page of the first manual that five separate manuals 
were in the binder, and gave descriptions of each, many 
reviewers were confused. They thought instead that the 
binder contained several sections of one manual. For exam- 
ple, they would look in the index of the last manual, the 
MS”-DOS Operating System User’s Guide, for page refer- 

manual improvement. Three of the more important sugges- 
tions that have been implemented are: 
m Start each chapter with a table of contents. 
rn Every reference to a function key should be followed 

with the keycap label, like Start (fl). 
rn Every keystroke sequence that requires pressing M u m  

to generate the desired action should include Return as 
the last keystroke. 
The postintroduction test of the Integral PC gave us our 

first chance to test the general manual improvements. Each 
reviewer opened a new box fresh from the production line 
to ensure that the contents were arranged and packaged 
just as actual users would see them when opening their 
newly purchased computer. One complaint these reviewers 
had was the difficulty and frustration of tearing the plastic 
shrink wrapping off the manual binders. They were espe- 
cially vocal about the very rugged clear plastic we used for 
the plastic bag containing the setup guide and tutor disc. 
These reviewers suggested we add an easy-open tab to the 
shrink wrapping and use a zip-lock plastic bag for the setup 
guide and tutor disc. These suggestions are being consid- 
ered. 

Our documentation department maintains a revision file 
on all current manuals. When a manual reprinting becomes 
due, the responsible writer checks the appropriate file and 
incorporates the corrections and changes that have col- 
lected since the last printing. All reviewer suggestions for 
manual improvements made during the postintroduction 
test of the Integral PC have been inserted in the appropriate 
manual revision file, provided the suggestions make sense 
(most of them do). In this way, the next printing of each 
manual will profit from the feedback given to us by these 
reviewers. 

What Improvements Have We Made to the Testing Process? 
Each time we conduct a usability test we learn how we 

can improve it further. Some of the improvements we’ve 
made to the testing process since we began are: 

The task list we used for the early tests was quite detailed. 

ences to the other manuals. Since each of the five manuals 
started with page 1-1, reviewers were understandably frus- 
trated. As a result, future loose-leaf bindeis will each con- 

\ ,  
\ 

tain only one loose-leaf manual, or will provide clear ways 
for users to realize that it contains more than one. 

The Portable reviewers made many other suggestions for 

Fig. 4. The Porfable is a 9-lb personal computer with built-in 
software for file management, spreadsheets, graphics, word 
processing, and data communications. 
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ce, the test of The Portable 
to perform 38 narrowly defined tas 
reviewers to perform in a particular order. For example, 
the first task asked them to turn on the computer. We now 
ask reviewers to complete a smaller series of broader objec- 
tives, and urge them to complete these objectives in any 
logical order. (An example of an iliogical order would be 
to start a program from the electronic disc before first copy- 
ing that program from a flexible disc.) The first task listed 
on our latest 14-item task list asks reviewers to install extra 
memry, but since we urged reviewers to perform tasks 
in any order, one reviewer perforined this task near the 
end of his session. 

H In the beginning, we used only one microphone, a lapel 
mike for the reviewer. Therefore, only half of the several 
conversations per session between the observer and the 
reviewer were recorded. Now the observer also has a mike, 
and we use a mixer to feed both audio signals to the video 
recorder. 

H The videotape of the first test consisted exclusively of 
wdium-to-long-distance shots of the reviewer working at.. 

ing printer paper, etc. As soon as a reviewer 
at the keyboard, we record a Close-up shot of the display. 
The main advantage is that the observer can tell what the 
reviewer is doing by watching the computer's display in 
the TV monitor. 
We now record the closing interview, rather than simply 


